Zobrazeno 1 - 10
of 44
pro vyhledávání: '"Keikha, Vahideh"'
We study a geometric facility location problem under imprecision. Given $n$ unit intervals in the real line, each with one of $k$ colors, the goal is to place one point in each interval such that the resulting \emph{minimum color-spanning interval} i
Externí odkaz:
http://arxiv.org/abs/2410.03213
Autor:
Keikha, Vahideh, Saumell, Maria
Given an $n$-vertex 1.5D terrain $\T$ and a set $\A$ of $m
Externí odkaz:
http://arxiv.org/abs/2301.05049
Let $\cal R$ be a set of $n$ colored imprecise points, where each point is colored by one of $k$ colors. Each imprecise point is specified by a unit disk in which the point lies. We study the problem of computing the smallest and the largest possible
Externí odkaz:
http://arxiv.org/abs/2208.13865
Autor:
Keikha, Vahideh
Given is a 1.5D terrain $\mathcal{T}$, i.e., an $x$-monotone polygonal chain in $\mathbb{R}^2$. For a given $2\le k\le n$, our objective is to approximate the largest area or perimeter convex polygon of exactly or at most $k$ vertices inside $\mathca
Externí odkaz:
http://arxiv.org/abs/2206.02396
Publikováno v:
Fundamenta Informaticae, Volume 184, Issue 3 (January 27, 2022) fi:8776
The $k$-center problem is to choose a subset of size $k$ from a set of $n$ points such that the maximum distance from each point to its nearest center is minimized. Let $Q=\{Q_1,\ldots,Q_n\}$ be a set of polygons or segments in the region-based uncer
Externí odkaz:
http://arxiv.org/abs/2111.13989
Publikováno v:
In Theoretical Computer Science 1 April 2024 990
Autor:
Keikha, Vahideh
Let $P$ be a set of $n$ points in $\mathbb{R}^2$. For a given positive integer $w
Externí odkaz:
http://arxiv.org/abs/2103.01660
A polygonal curve $P$ with $n$ vertices is $c$-packed, if the sum of the lengths of the parts of the edges of the curve that are inside any disk of radius $r$ is at most $cr$, for any $r>0$. Similarly, the concept of $c$-packedness can be defined for
Externí odkaz:
http://arxiv.org/abs/2012.04403
Autor:
Keikha, Vahideh, van de Kerkhof, Mees, van Kreveld, Marc, Kostitsyna, Irina, Löffler, Maarten, Staals, Frank, Urhausen, Jérôme, Vermeulen, Jordi L., Wiratma, Lionov
We consider the problem of testing, for a given set of planar regions $\cal R$ and an integer $k$, whether there exists a convex shape whose boundary intersects at least $k$ regions of $\cal R$. We provide a polynomial time algorithm for the case whe
Externí odkaz:
http://arxiv.org/abs/1809.10078
Assume we are given a set of parallel line segments in the plane, and we wish to place a point on each line segment such that the resulting point set maximizes or minimizes the area of the largest or smallest triangle in the set. We analyze the compl
Externí odkaz:
http://arxiv.org/abs/1712.08911