Zobrazeno 1 - 10
of 353
pro vyhledávání: '"Keenan, Tiarnan D"'
Autor:
Chen, Qingyu, Keenan, Tiarnan D L, Agron, Elvira, Allot, Alexis, Guan, Emily, Duong, Bryant, Elsawy, Amr, Hou, Benjamin, Xue, Cancan, Bhandari, Sanjeeb, Broadhead, Geoffrey, Cousineau-Krieger, Chantal, Davis, Ellen, Gensheimer, William G, Grasic, David, Gupta, Seema, Haddock, Luis, Konstantinou, Eleni, Lamba, Tania, Maiberger, Michele, Mantopoulos, Dimosthenis, Mehta, Mitul C, Nahri, Ayman G, AL-Nawaflh, Mutaz, Oshinsky, Arnold, Powell, Brittany E, Purt, Boonkit, Shin, Soo, Stiefel, Hillary, Thavikulwat, Alisa T, Wroblewski, Keith James, Chung, Tham Yih, Cheung, Chui Ming Gemmy, Cheng, Ching-Yu, Chew, Emily Y, Hribar, Michelle R., Chiang, Michael F., Lu, Zhiyong
Timely disease diagnosis is challenging due to increasing disease burdens and limited clinician availability. AI shows promise in diagnosis accuracy but faces real-world application issues due to insufficient validation in clinical workflows and dive
Externí odkaz:
http://arxiv.org/abs/2409.15087
Autor:
Gilson, Aidan, Ai, Xuguang, Arunachalam, Thilaka, Chen, Ziyou, Cheong, Ki Xiong, Dave, Amisha, Duic, Cameron, Kibe, Mercy, Kaminaka, Annette, Prasad, Minali, Siddig, Fares, Singer, Maxwell, Wong, Wendy, Jin, Qiao, Keenan, Tiarnan D. L., Hu, Xia, Chew, Emily Y., Lu, Zhiyong, Xu, Hua, Adelman, Ron A., Tham, Yih-Chung, Chen, Qingyu
Despite the potential of Large Language Models (LLMs) in medicine, they may generate responses lacking supporting evidence or based on hallucinated evidence. While Retrieval Augment Generation (RAG) is popular to address this issue, few studies imple
Externí odkaz:
http://arxiv.org/abs/2409.13902
Autor:
Yang, Rui, Zeng, Qingcheng, You, Keen, Qiao, Yujie, Huang, Lucas, Hsieh, Chia-Chun, Rosand, Benjamin, Goldwasser, Jeremy, Dave, Amisha D, Keenan, Tiarnan D. L., Chew, Emily Y, Radev, Dragomir, Lu, Zhiyong, Xu, Hua, Chen, Qingyu, Li, Irene
This study introduces Ascle, a pioneering natural language processing (NLP) toolkit designed for medical text generation. Ascle is tailored for biomedical researchers and healthcare professionals with an easy-to-use, all-in-one solution that requires
Externí odkaz:
http://arxiv.org/abs/2311.16588
Autor:
Chen, Qingyu, Keenan, Tiarnan D. L., Allot, Alexis, Peng, Yifan, Agrón, Elvira, Domalpally, Amitha, Klaver, Caroline C. W., Luttikhuizen, Daniel T., Colyer, Marcus H., Cukras, Catherine A., Wiley, Henry E., Magone, M. Teresa, Cousineau-Krieger, Chantal, Wong, Wai T., Zhu, Yingying, Chew, Emily Y., Lu, Zhiyong
Objective Reticular pseudodrusen (RPD), a key feature of age-related macular degeneration (AMD), are poorly detected by human experts on standard color fundus photography (CFP) and typically require advanced imaging modalities such as fundus autofluo
Externí odkaz:
http://arxiv.org/abs/2011.05142
Autor:
Peng, Yifan, Keenan, Tiarnan D., Chen, Qingyu, Agrón, Elvira, Allot, Alexis, Wong, Wai T., Chew, Emily Y., Lu, Zhiyong
By 2040, age-related macular degeneration (AMD) will affect approximately 288 million people worldwide. Identifying individuals at high risk of progression to late AMD, the sight-threatening stage, is critical for clinical actions, including medical
Externí odkaz:
http://arxiv.org/abs/2007.09550
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
A deep learning approach for automated detection of geographic atrophy from color fundus photographs
Autor:
Keenan, Tiarnan D., Dharssi, Shazia, Peng, Yifan, Chen, Qingyu, Agrón, Elvira, Wong, Wai T., Lu, Zhiyong, Chew, Emily Y.
Purpose: To assess the utility of deep learning in the detection of geographic atrophy (GA) from color fundus photographs; secondary aim to explore potential utility in detecting central GA (CGA). Design: A deep learning model was developed to detect
Externí odkaz:
http://arxiv.org/abs/1906.03153
Autor:
Peng, Yifan, Dharssi, Shazia, Chen, Qingyu, Keenan, Tiarnan D., Agrón, Elvira, Wong, Wai T., Chew, Emily Y., Lu, Zhiyong
Publikováno v:
Ophthalmology. 2018 Nov 22. pii: S0161-6420(18)32185-7
In assessing the severity of age-related macular degeneration (AMD), the Age-Related Eye Disease Study (AREDS) Simplified Severity Scale predicts the risk of progression to late AMD. However, its manual use requires the time-consuming participation o
Externí odkaz:
http://arxiv.org/abs/1811.07492
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.