Zobrazeno 1 - 10
of 77
pro vyhledávání: '"Keelan Evanini"'
Publikováno v:
Journal of Signal Processing Systems. 92:805-817
Spoken language understanding (SLU) in human machine conversational systems is the process of interpreting the semantic meaning conveyed by a user’s spoken utterance. Traditional SLU approaches transform the word string transcribed by an automatic
Autor:
Carol Forsyth, Keelan Evanini, Christine Luce, Youngsoon So, G. Tanner Jackson, Diego Zapata-Rivera
Publikováno v:
Computer Assisted Language Learning. 32:398-417
This study investigated a new conversation-based assessment for English language learners. In this assessment, students converse with animated agents in natural language conversations to assess var...
Autor:
Keelan Evanini, Patrick Lange, Anastassia Loukina, Tan Lee, Yao Qian, Ying Qin, Abhinav Misra
Publikováno v:
ISCSLP
Automated reading error detection has attracted a lot of interest in the area of computer-assisted language learning and auto-mated reading tutors. This paper presents preliminary experimental results on automatic detection of word-level reading erro
Publikováno v:
SLT
This study explores the use of Transformer-based models for the automated assessment of children’s non-native spontaneous speech. Traditional approaches for this task have relied heavily on delivery features (e.g., fluency), whereas the goal of the
Publikováno v:
INTERSPEECH
The COVID-19 pandemic has led to a dramatic increase in the use of face masks worldwide Face coverings can affect both acoustic properties of the signal as well as speech patterns and have unintended effects if the person wearing the mask attempts to
Publikováno v:
INTERSPEECH
Publikováno v:
Assessing English Language Proficiency in U.S. K–12 Schools ISBN: 9780429491689
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2116eb0a49dced5aa252e40e80bcf71d
https://doi.org/10.4324/9780429491689-11
https://doi.org/10.4324/9780429491689-11
Autor:
Keelan Evanini, Aoife Cahill
Publikováno v:
Handbook of Automated Scoring ISBN: 9781351264808
Handbook of Automated Scoring
Handbook of Automated Scoring
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1e1b204115f5b6dd1f65ab51d8289d78
https://doi.org/10.1201/9781351264808-5
https://doi.org/10.1201/9781351264808-5
Publikováno v:
Proceedngs of Interspeech 2020, 4452-4456. [S.l.] : [S.n.]
STARTPAGE=4452;ENDPAGE=4456;TITLE=Proceedngs of Interspeech 2020
INTERSPEECH
Proceedngs of Interspeech 2020, pp. 4452-4456
STARTPAGE=4452;ENDPAGE=4456;TITLE=Proceedngs of Interspeech 2020
INTERSPEECH
Proceedngs of Interspeech 2020, pp. 4452-4456
Contains fulltext : 228191.pdf (Publisher’s version ) (Open Access) Interspeech 2020, 25 oktober 2020
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5c9ebf523d83c539fd3c0651b1cde107
http://hdl.handle.net/2066/228191
http://hdl.handle.net/2066/228191
Publikováno v:
ASRU
Automatic detection of an individual's native language (L1) based on speech data from their second language (L2) can be useful for informing a variety of speech applications such as automatic speech recognition (ASR), speaker recognition, voice biome