Zobrazeno 1 - 10
of 922
pro vyhledávání: '"Keel, M."'
Publikováno v:
In Research in Veterinary Science January 2023 154:44-51
Autor:
Ball, Erin E., Weiss, Christopher M., Liu, Hongwei, Jackson, Kenneth, Keel, M. Kevin, Miller, Christopher J., Van Rompay, Koen K.A., Coffey, Lark L., Pesavento, Patricia A.
Publikováno v:
In The American Journal of Pathology February 2023
Autor:
Garrett, Kayla, Halseth, Ashlyn, Ruder, Mark G., Beasley, James, Shock, Barbara, Birkenheuer, Adam J., Gabriel, Mourad, Fiorello, Christine, Haire, M. Melanie, Olfenbuttel, Colleen, Keel, M. Kevin, Yabsley, Michael J.
Publikováno v:
In Veterinary Parasitology: Regional Studies and Reports April 2022 29
Autor:
Dugovich, Brian S., Barton, Ethan P., Crum, James M., Keel, M. Kevin, Stallknecht, David E., Ruder, Mark G.
Publikováno v:
Journal of Wildlife Diseases; Oct2024, Vol. 60 Issue 4, p839-849, 11p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Greening, Sabrina S., Haman, Katie, Drazenovich, Tracy, Chacon-Heszele, Maria, Scafini, Michael, Turner, Greg, Huckabee, John, Leonhardt, Jean, vanWestrienen, Jesse, Perelman, Max, Thompson, Patricia, Keel, M. Kevin
Publikováno v:
Journal of Wildlife Diseases; Apr2024, Vol. 60 Issue 2, p298-305, 8p
We consider the cubic defocusing nonlinear Schr\"odinger equation on the two dimensional torus. We exhibit smooth solutions for which the support of the conserved energy moves to higher Fourier modes. This weakly turbulent behavior is quantified by t
Externí odkaz:
http://arxiv.org/abs/0808.1742
The initial value problem for the cubic defocusing nonlinear Schr\"odinger equation $i \partial_t u + \Delta u = |u|^2 u$ on the plane is shown to be globally well-posed for initial data in $H^s (\R^2)$ provided $s>1/2$. The proof relies upon an almo
Externí odkaz:
http://arxiv.org/abs/0704.2730
We prove two finite dimensional approximation results and a symplectic non-squeezing property for the Korteweg-de Vries (KdV) flow on the circle T. The nonsqueezing result relies on the aforementioned approximations and the finite-dimensional nonsque
Externí odkaz:
http://arxiv.org/abs/math/0412381
We prove global existence and scattering for the defocusing, cubic nonlinear Schr\"odinger equation in $H^s(\rr^3)$ for $s > {4/5}$. The main new estimate in the argument is a Morawetz-type inequality for the solution $\phi$. This estimate bounds $\|
Externí odkaz:
http://arxiv.org/abs/math/0301260