Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Keegan Lensink"'
Publikováno v:
Artificial Intelligence in Geosciences, Vol 5, Iss , Pp 100087- (2024)
The large spatial/temporal/frequency scale of geoscience and remote-sensing datasets causes memory issues when using convolutional neural networks for (sub-) surface data segmentation. Recently developed fully reversible or fully invertible networks
Externí odkaz:
https://doaj.org/article/8c33c70e82444bcd9431b1e5e92fc40c
Autor:
Keegan Lensink, Fu (Jorden) Lo, Rachel L. Eddy, Marco Law, Issam Laradji, Eldad Haber, Savvas Nicolaou, Darra Murphy, William A. Parker
Publikováno v:
Academic Radiology. 29:994-1003
Hard data labels for automated algorithm training are binary and cannot incorporate uncertainty between labels. We proposed and evaluated a soft labeling methodology to quantify opacification and percent well-aerated lung (%WAL) on chest CT, that con
Autor:
Marco Law, Issam H. Laradji, Derek Nowrouzezahrai, Keegan Lensink, Oscar Mañas, William Parker, Lironne Kurzman, David Vazquez, Pau Rodríguez
Publikováno v:
WACV
Coronavirus Disease 2019 (COVID-19) has spread aggressively across the world causing an existential health crisis. Thus, having a system that automatically detects COVID-19 in tomography (CT) images can assist in quantifying the severity of the illne
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::889047f350645c269799c59374a92386
http://arxiv.org/abs/2007.02180
http://arxiv.org/abs/2007.02180
Autor:
Michael Lange, Fabio Luporini, Gerard J. Gorman, Keegan Lensink, Philipp Witte, Navjot Kukreja, Mathias Louboutin, Felix J. Herrmann
Publikováno v:
The Leading Edge. 37:142-145
This tutorial is the third part of a full-waveform inversion (FWI) tutorial series with a step-by-step walkthrough of setting up forward and adjoint wave equations and building a basic FWI inversion framework. For discretizing and solving wave equati