Zobrazeno 1 - 10
of 437
pro vyhledávání: '"Kedlaya, Kiran"'
We compile a complete list of isomorphism class representatives of curves of genus 6 over $\mathbb{F}_2$. We use explicit descriptions of canonical curves in each stratum of the Brill--Noether stratification of the moduli space $\mathcal{M}_6$, due t
Externí odkaz:
http://arxiv.org/abs/2402.00716
Coleman integrals is a major tool in the explicit arithmetic of algebraic varieties, notably in the study of rational points on curves. One of the inputs to compute Coleman integrals is the availability of an affine model. We develop a model-free alg
Externí odkaz:
http://arxiv.org/abs/2401.14513
Autor:
Kedlaya, Kiran, Kopparty, Swastik
For an odd prime $p$, we say $f(X) \in {\mathbb F}_p[X]$ computes square roots in $\mathbb F_p$ if, for all nonzero perfect squares $a \in \mathbb F_p$, we have $f(a)^2 = a$. When $p \equiv 3 \mod 4$, it is well known that $f(X) = X^{(p+1)/4}$ comput
Externí odkaz:
http://arxiv.org/abs/2311.10956
Let A and A' be abelian varieties defined over a number field k such that Hom(A,A') = 0. Under the Generalized Riemann hypothesis for motivic L-functions attached to A and A', we show that there exists a prime p of k of good reduction for A and A' at
Externí odkaz:
http://arxiv.org/abs/2310.10568
For a fixed positive integer $e$, we describe an algorithm for computing, for all primes $p \leq X$, the mod-$p^e$ reduction of the trace of Frobenius at $p$ of a fixed hypergeometric motive over $\mathbb{Q}$ in time quasilinear in $X$. This extends
Externí odkaz:
http://arxiv.org/abs/2310.06971
Autor:
Carter, Annie, Kedlaya, Kiran S.
We prove that given an analytic action of a compact $p$-adic Lie group on a Banach space over a field of positive characteristic, one can detect either the simultaneous vanishing or the simultaneous finite-dimensionality of all of the continuous coho
Externí odkaz:
http://arxiv.org/abs/2306.05826
Autor:
Banaszak, Grzegorz, Kedlaya, Kiran S.
This paper concerns the Algebraic Sato--Tate and Sato--Tate conjectures, based on Serre's original motivic formulation, with an eye towards explicit computations of Sato--Tate groups. We build on the algebraic framework for the Sato--Tate conjecture
Externí odkaz:
http://arxiv.org/abs/2302.13016