Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Kečkić, Dragoljub J."'
Autor:
Kečkić, Dragoljub J., Lazović, Zlatko
Consider a countably generated Hilbert $C^*$-module $\mathcal M$ over a $C^*$-algebra $\mathcal A$. There is a measure of noncompactness $\lambda$ defined, roughly as the distance from finitely generated projective submodules, which is independent of
Externí odkaz:
http://arxiv.org/abs/2409.02514
We give necessary and sufficient condition that an element of an arbitrary $C^{*}$-algebra is an isolated vertex of the orthograph related to the mutual strong Birkhoff-James orthogonality. Also, we prove that for all $C^{*}$-algebras except $\mathbb
Externí odkaz:
http://arxiv.org/abs/2301.12565
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 December 2023 528(1)
Autor:
Kečkić, Dragoljub J.
Recently proved weighted Cauchy Scwarz inequality for Hilbert $C^*$-modules leads to many H\"older type inequalities for unitarily invariant norms on Hilbert space operators.
Comment: 7 pages
Comment: 7 pages
Externí odkaz:
http://arxiv.org/abs/1907.00369
The famous result of B.~Schweizer and A.~Sklar [Pacific J Math 10(1960) 313--334 - Theorem 8.2] asserts that, given a probabilistic metric space $(X,\mathcal F,t)$, $\mathcal F=\{F_{p,q}:p,q\in X\}$, we have $F_{p_n,q_n}(x)\to F_{p,q}(x)$ provided th
Externí odkaz:
http://arxiv.org/abs/1810.00971
Autor:
Kečkić, Dragoljub J.
We apply the inequality $\left|\left\right|\le\|x\|\,\left^{1/2}$ to give an easy and elementary proof of many operator inequalities for elementary operators and inner type product integral transformers obtained during last two
Externí odkaz:
http://arxiv.org/abs/1801.07953
Autor:
Kečkić, Dragoljub J.
Let $G$ be a compact abelian group, let $\mu$ be the corresponding Haar measure, and let $\hat G$ be the Pontryagin dual of $G$. Further, let $C_p$ denote the Schatten class of operators on some separable infinite dimensional Hilbert space, and let $
Externí odkaz:
http://arxiv.org/abs/1801.02103
Autor:
Kečkić, Dragoljub J., Lazović, Zlatko
We define a measure of noncompactness $\lambda$ on the standard Hilbert $C^*$-module $l^2(\mathcal A)$ over a unital $C^*$-algebra, such that $\lambda(E)=0$ if and only if $E$ is $\mathcal A$-precompact (i.e.\ it is $\varepsilon$-close to a finitely
Externí odkaz:
http://arxiv.org/abs/1711.09466
Autor:
Kečkić, Dragoljub J.
Publikováno v:
Applicable Analysis and Discrete Mathematics, 2020 Apr 01. 14(1), 169-182.
Externí odkaz:
https://www.jstor.org/stable/26964952
Autor:
Kečkić, Dragoljub J, Lazović, Zlatko
Publikováno v:
Ann. Funct. Anal. 9, no. 2 (2018), 258-270
We construct a topology on the standard Hilbert module $l^2(\mathcal A)$ over a unital $W^*$-algebra $\mathcal A$ such that any "compact" operator, (i.e.\ any operator in the norm closure of the linear span of the operators of the form $x\mapsto\left
Externí odkaz:
http://arxiv.org/abs/1610.06956