Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Kazuya Kawasetsu"'
Publikováno v:
Journal of Algebra
Journal of Algebra, Elsevier, 2021, 588, pp.118-128. ⟨10.1016/j.jalgebra.2021.07.030⟩
Journal of Algebra, 2021, 588, pp.118-128. ⟨10.1016/j.jalgebra.2021.07.030⟩
Journal of Algebra, Elsevier, 2021, 588, pp.118-128. ⟨10.1016/j.jalgebra.2021.07.030⟩
Journal of Algebra, 2021, 588, pp.118-128. ⟨10.1016/j.jalgebra.2021.07.030⟩
Let k be a field of characteristic zero. This paper studies a problem proposed by Joseph F. Ritt in 1950. Precisely, we prove that (1) If p ⩾ 2 is an integer, for every integer i ∈ N , the nilpotency index of the image of T i in the ring k { T }
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c158409a0466d9606c37894d59cc48c0
https://hal.archives-ouvertes.fr/hal-03360846
https://hal.archives-ouvertes.fr/hal-03360846
Publikováno v:
Letters in Mathematical Physics. 111
The Nappi-Witten model is a Wess-Zumino-Witten model in which the target space is the nonreductive Heisenberg group $H_4$. We consider the representation theory underlying this conformal field theory. Specifically, we study the category of weight mod
The first part of this work uses the algorithm recently detailed in arXiv:1906.02935 to classify the irreducible weight modules of the minimal model vertex operator algebra $L_k(\mathfrak{sl}_3)$, when the level $k$ is admissible. These are naturally
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::219e6d2e90593e779c7b94d933f520dc
http://arxiv.org/abs/2107.13204
http://arxiv.org/abs/2107.13204
Autor:
Kazuya Kawasetsu, David Ridout
Publikováno v:
Communications in Contemporary Mathematics. 24
This is the second of a series of articles devoted to the study of relaxed highest-weight modules over affine vertex algebras and W-algebras. The first studied the simple "rank-$1$" affine vertex superalgebras $L_k(\mathfrak{sl}_2)$ and $L_k(\mathfra
The Bershadsky-Polyakov algebras are the minimal quantum hamiltonian reductions of the affine vertex algebras associated to $\mathfrak{sl}_3$ and their simple quotients have a long history of applications in conformal field theory and string theory.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::afa3c57c749d09cedff76bae4cb44be4
http://arxiv.org/abs/2007.03917
http://arxiv.org/abs/2007.03917
We present a realisation of the universal/simple Bershadsky--Polyakov vertex algebras as subalgebras of the tensor product of the universal/simple Zamolodchikov vertex algebras and an isotropic lattice vertex algebra. This generalises the realisation
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bbf67afd1342c0d48c8344b5fce7bb94
http://arxiv.org/abs/2007.00396
http://arxiv.org/abs/2007.00396
Autor:
Kazuya Kawasetsu
This is the third of a series of articles devoted to the study of relaxed highest weight modules over vertex operator algebras. Relaxed highest weight modules over affine vertex algebras associated to higher rank Lie algebras $A_\ell$ are extensively
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aaf1caf3b43f2c0fc290fd96064813eb
Autor:
Yuichi Sakai, Kazuya Kawasetsu
Publikováno v:
Journal of Algebra. 506:445-488
A characterization of the minimal W -algebras associated with the Deligne exceptional series at level − h ∨ / 6 is obtained by using one-parameter family of modular linear differential equations of order 4. In particular, the characters of the Ra
Publikováno v:
Proceedings of the American Mathematical Society. 146:1937-1950
The vertex operator algebra structure of a strongly regular holomorphic vertex operator algebra V V of central charge 24 24 is proved to be uniquely determined by the Lie algebra structure of its weight one space V 1 V_1 if V 1 V_1 is a Lie algebra o
Publikováno v:
Communications in Mathematical Physics. 355:339-372
Let $\mathfrak{g}$ be a simple, finite-dimensional Lie (super)algebra equipped with an embedding of $\mathfrak{s} \mathfrak{l}_2$ inducing the minimal gradation on $\mathfrak{g}$. The corresponding minimal $\mathcal{W}$-algebra $\mathcal{W}^k(\mathfr