Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Kazunari, Hori"'
Autor:
Kazunari, Hori, Akihiro, Sakajiri
Publikováno v:
言語資源活用ワークショップ発表論文集 = Proceedings of Language Resources Workshop. 5:267-273
Osaka University
会議名: 言語資源活用ワークショップ2020, 開催地: オンライン, 会期: 2020年9月8日−9日, 主催: 国立国語研究所 コーパス開発センター
大学学部初年次生向け科学技術系
会議名: 言語資源活用ワークショップ2020, 開催地: オンライン, 会期: 2020年9月8日−9日, 主催: 国立国語研究所 コーパス開発センター
大学学部初年次生向け科学技術系
Publikováno v:
Journal of the Physical Society of Japan. 63:1295-1310
An analytical study is made to seek intrinsic nonlinear-mode solutions to the d -dimensional sine-lattice (SL) equation \begin{aligned} \sum_{i} J_{i} \{\sin[u({\mib n}+ {\mib e}_{i}) -u({\mib n})]- \sin[u({\mib n}) -u({\mib n} - {\mib e}_{i})]\} -[\
Autor:
Kazunari Hori
Publikováno v:
Journal of the Physical Society of Japan. 62:1819-1822
A wavelet analysis is made for one-dimensional anharmonic self-localized modes by decomposition of their time evolution signals. For a localized mode with eigenfrequency above the top of the harmonic frequency band, the finest-resolution wavelet coef
Autor:
Kazunari Hori, Shozo Takeno
Publikováno v:
Journal of the Physical Society of Japan. 61:4263-4266
The existence of two branches of moving anharmonic localized modes is shown for a one-dimensional (1D) lattice with hard quartic anharmonicity. By the use of a pair of exactly solvable model nonlinear lattice equations as a reference system, approxim
Autor:
Kazunari Hori, Shozo Takeno
Publikováno v:
Journal of the Physical Society of Japan. 61:2186-2189
A numerical experiment and an analytical calculation are made to study self-localized modes for the displacement field of a pure one-dimensional lattice with hard quartic anharmonicity. Approximate analytical solutions are obtained for moving localiz
Autor:
Kazunari Hori, Shozo Takeno
Publikováno v:
Journal of the Physical Society of Japan. 59:3037-3040
A pure one-dimensional lattice with quartic anharmonicity and nearest-neighbor interactions is shown to exhibit a fairly well-defined propagating self-localized mode above the harmonic frequency band. This is a propagating-mode version of a stationar