Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Kazuhisa SETO"'
Publikováno v:
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. :1298-1308
Publikováno v:
WALCOM: Algorithms and Computation ISBN: 9783031270505
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cda328e566906ba85309923eb5fd943d
https://doi.org/10.1007/978-3-031-27051-2_12
https://doi.org/10.1007/978-3-031-27051-2_12
Publikováno v:
Journal of Computer and System Sciences. 105:87-103
A Boolean function f:{0,1}^n -> {0,1} is weighted symmetric if there exist a function g: Z -> {0,1} and integers w_0, w_1, ..., w_n such that f(x_1, ...,x_n) = g(w_0+sum_{i=1}^n w_i x_i) holds. In this paper, we present algorithms for the circuit sat
Publikováno v:
Theoretical Computer Science. 697:58-68
We present improved exponential time exact algorithms for Max SAT. Our algorithms run in time of the form O ( 2 ( 1 − μ ( c ) ) n ) for instances with n variables and m = c n clauses. In this setting, there are three incomparable currently best al
Publikováno v:
Algorithmica. 80:2725-2741
A k-indexed Binary Decision Diagram (k-IBDD) is a branching program with k-layers and each layer consists of an Ordered Binary Decision Diagram (OBDD). This paper studies the satisfiability of k-IBDD (k-IBDD SAT). A k-IBDD SAT is, given a k-IBDD, to
Autor:
Kazuhisa Seto, Junichi Teruyama
Publikováno v:
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. :1019-1024
Publikováno v:
IEICE Transactions on Information and Systems. :1736-1743
We give efficient algorithms for Sorting k-Sets in Bins. The Sorting k-Sets in Bins problem can be described as follows: We are given numbered n bins with k balls in each bin. Balls in the i-th bin are numbered n − i + 1. We can only swap balls bet
Autor:
Kazuhisa Seto
Publikováno v:
Interdisciplinary Information Sciences. 21:307-328
Publikováno v:
Theory of Computing Systems. 57:426-443
We present a moderately exponential time and polynomial space algorithm for sparse instances of Max SAT. Our algorithms run in time of the form O2(1?μ(c))n$O\left (2^{(1-\mu (c))n}\right )$ for instances with n variables and cn clauses. Our determin
Autor:
Kazuhisa Seto, Suguru Tamaki
Publikováno v:
IEEE Conference on Computational Complexity
We present a moderately exponential time algorithm for the satisfiability of Boolean formulas over the full binary basis. For formulas of size at most cn, our algorithm runs in time $${2^{(1-\mu_{c})n}}$$ for some constant μ c > 0. As a byproduct of