Zobrazeno 1 - 10
of 156
pro vyhledávání: '"Kazuhiro Hikami"'
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 6, p 091 (2010)
We define a class of Y(sl_{(m|n)}) Yangian invariant Haldane-Shastry (HS) like spin chains, by assuming that their partition functions can be written in a particular form in terms of the super Schur polynomials. Using some properties of the super Sch
Externí odkaz:
https://doaj.org/article/01a954fa28b74c048ba3e64f04f627e5
Publikováno v:
IRMA Lectures in Mathematics and Theoretical Physics ISBN: 9783985470013
European Mathematical Society Press, 698 p., 2021, ISBN print 978-3-98547-001-3, ISBN online 978-3-98547-501-8. ⟨10.4171/IRMA/33⟩
European Mathematical Society Press, 698 p., 2021, ISBN print 978-3-98547-001-3, ISBN online 978-3-98547-501-8. ⟨10.4171/IRMA/33⟩
International audience; The present volume consists of a collection of essays dedicated to Vladimir Turaev. The essays cover the large spectrum of topics in which Turaev has been interested, including knot and link invariants, quantum representations
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::933ffb903aafe15212001d7109d5cc5c
https://doi.org/10.4171/irma/33
https://doi.org/10.4171/irma/33
Autor:
Jeremy Lovejoy, Kazuhiro Hikami
Publikováno v:
Communications in Number Theory and Physics. 11:249-272
Autor:
Kazuhiro Hikami
We study a topological aspect of rank-1 double affine Hecke algebra (DAHA). Clarified is a relationship between the DAHA of A1-type (resp. CC1-type) and the skein algebra on a once-punctured torus (resp. a 4-punctured sphere), and the SL(2;Z) actions
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d814ff42051954106c341b9e9d21da45
Autor:
Kazuhiro Hikami, Rei Inoue
Publikováno v:
Algebr. Geom. Topol. 15, no. 4 (2015), 2175-2194
We try to give a cluster algebraic interpretation of complex volume of knots. We construct the R-operator from the cluster mutations, and we show that it is regarded as a hyperbolic octahedron. The cluster variables are interpreted as edge parameters
Autor:
Kazuhiro Hikami
We use Bonahon-Wong's trace map to study character varieties of the once-punctured torus and of the 4-punctured sphere. We clarify a relationship with cluster algebra associated with ideal triangulations of surfaces, and we show that the Goldman Pois
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1d964f04eb9c705b5f6ae950f7da192e
Autor:
Kazuhiro Hikami
Publikováno v:
Annals of Physics. 323:1729-1769
We study topological properties of quasi-particle states in the non-Abelian quantum Hall states. We apply a skein-theoretic method to the Read--Rezayi state whose effective theory is the SU(2)_K Chern--Simons theory. As a generalization of the Pfaffi
Publikováno v:
Nuclear Physics B. 782:276-295
By using the Y ( gl ( m | n ) ) super Yangian symmetry of the SU ( m | n ) supersymmetric Haldane–Shastry spin chain, we show that the partition function of this model satisfies a duality relation under the exchange of bosonic and fermionic spin de
Autor:
Kazuhiro Hikami
Publikováno v:
Journal of Geometry and Physics. 57:1895-1940
We introduce and study the partition function Z γ ( M ) for the cusped hyperbolic 3-manifold M . We construct formally this partition function based on an oriented ideal triangulation of M by assigning to each tetrahedron the quantum dilogarithm fun