Zobrazeno 1 - 10
of 3 559
pro vyhledávání: '"Kazerounian"'
Autor:
Chorsi, Mey-Sam, Linthicum, Will, Pozhidaeva, Alexandra, Mundrane, Caitlyn, Mulligan, Vikram Khipple, Chen, Yihang, Tavousi, Pouya, Gorbatyuk, Vitaliy, Vinogradova, Olga, Hoch, Jeffrey C., Huey, Bryan D., Nguyen, Thanh D., Soh, H. Tom, Kazerounian, Kazem, Ilies, Horea
Publikováno v:
In Nano Today June 2024 56
The recent introduction of Graph Neural Networks (GNNs) and their growing popularity in the past few years has enabled the application of deep learning algorithms to non-Euclidean, graph-structured data. GNNs have achieved state-of-the-art results ac
Externí odkaz:
http://arxiv.org/abs/2010.13668
Many researchers have explored ways to bring static typing to dynamic languages. However, to date, such systems are not precise enough when types depend on values, which often arises when using certain Ruby libraries. For example, the type safety of
Externí odkaz:
http://arxiv.org/abs/1904.03521
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Refinement types are a popular way to specify and reason about key program properties. In this paper, we introduce RTR, a new system that adds refinement types to Ruby. RTR is built on top of RDL, a Ruby type checker that provides basic type informat
Externí odkaz:
http://arxiv.org/abs/1711.09281
Publikováno v:
ASME Transactions, Journal of Nanotechnology in Engineering and Medicine, 6(3), p.034601, 2016
A reliable prediction of 3D protein structures from sequence data remains a big challenge due to both theoretical and computational difficulties. We have previously shown that our kinetostatic compliance method (KCM) implemented into the Protofold pa
Externí odkaz:
http://arxiv.org/abs/1712.05012
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We introduce a dynamic neural algorithm called Dynamic Neural (DN) SARSA(\lambda) for learning a behavioral sequence from delayed reward. DN-SARSA(\lambda) combines Dynamic Field Theory models of behavioral sequence representation, classical reinforc
Externí odkaz:
http://arxiv.org/abs/1210.3569
Publikováno v:
Journal of Structural and Construction Engineering, Vol 8, Iss 1, Pp 286-306 (2021)
Observations from past earthquakes in reinforced concrete buildings show that the masonry partitions can endanger the life of buildings occupants and lead to significant damage and loss. The most present codes of practice do not consider the effects
Externí odkaz:
https://doaj.org/article/3a2b86ee20514490bbb102977b6ada47
Autor:
Tulin Dadali, Anne R. Diers, Shiva Kazerounian, Senthil K. Muthuswamy, Pallavi Awate, Ryan Ng, Saie Mogre, Carrie Spencer, Katerina Krumova, Hannah E. Rockwell, Justice McDaniel, Emily Y. Chen, Fei Gao, Karl T. Diedrich, Vijetha Vemulapalli, Leonardo O. Rodrigues, Viatcheslav R. Akmaev, Khampaseuth Thapa, Manuel Hidalgo, Arindam Bose, Vivek K. Vishnudas, A. James Moser, Elder Granger, Michael A. Kiebish, Stephane Gesta, Niven R. Narain, Rangaprasad Sarangarajan
Publikováno v:
Scientific Reports, Vol 11, Iss 1, Pp 1-16 (2021)
Abstract Reactive oxygen species (ROS) are implicated in triggering cell signalling events and pathways to promote and maintain tumorigenicity. Chemotherapy and radiation can induce ROS to elicit cell death allows for targeting ROS pathways for effec
Externí odkaz:
https://doaj.org/article/e79d9a1528004582b599d5a67e27bffe