Zobrazeno 1 - 10
of 108
pro vyhledávání: '"Kawai, Kotaro"'
Autor:
Kawai, Kotaro
A deformed Donaldson-Thomas (dDT) connection is a Hermitian connection of a Hermitian line bundle over a $G_2$-manifold $X$ satisfying a certain nonlinear PDE. This is considered to be the mirror of a (co)associative cycle in the context of mirror sy
Externí odkaz:
http://arxiv.org/abs/2309.11794
Autor:
Kawai, Kotaro
For Hermitian connections on a Hermitian complex line bundle over a Riemannian manifold, we can define the ``volume", which can be considered to be the ``mirror" of the standard volume for submanifolds. We call the critical points minimal connections
Externí odkaz:
http://arxiv.org/abs/2309.11796
Autor:
Kawai, Kotaro, Yamamoto, Hikaru
We can define the ``volume'' $V$ for Hermitian connections on a Hermitian complex line bundle over a Riemannian manifold $X$, which can be considered to be the ``mirror'' of the standard volume for submanifolds. This is called the Dirac-Born-Infeld (
Externí odkaz:
http://arxiv.org/abs/2103.13863
Autor:
Kawai, Kotaro, Yamamoto, Hikaru
The real Fourier-Mukai transform sends a section of a torus fibration to a connection over the total space of the dual torus fibration. By this method, Leung, Yau and Zaslow introduced deformed Hermitian Yang-Mills (dHYM) connections for K\"ahler man
Externí odkaz:
http://arxiv.org/abs/2101.03984
Autor:
Kawai, Kotaro, Yamamoto, Hikaru
A deformed Donaldson-Thomas connection for a manifold with a ${\rm Spin}(7)$-structure, which we call a ${\rm Spin}(7)$-dDT connection, is a Hermitian connection on a Hermitian line bundle $L$ over a manifold with a ${\rm Spin}(7)$-structure defined
Externí odkaz:
http://arxiv.org/abs/2101.03986
Autor:
Kawai, Kotaro, Yamamoto, Hikaru
A deformed Donaldson-Thomas (dDT) connection is a Hermitian connection of a Hermitian line bundle over a $G_2$-manifold $X$ satisfying a certain nonlinear PDE. This is considered to be the mirror of a (co)associative cycle in the context of mirror sy
Externí odkaz:
http://arxiv.org/abs/2004.00532
Autor:
Kawai, Kotaro
Publikováno v:
J. Lond. Math. Soc. (2) 103 (2021), 516-557
We introduce a new notion of a homogeneous pair for a pseudo-Riemannian metric $g$ and a positive function $f$ on a manifold $M$ admitting a free $\mathbb{R}_{>0}$-action. There are many examples admitting this structure. For example, (a) a class of
Externí odkaz:
http://arxiv.org/abs/1908.01648
Publikováno v:
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XXII (2021), 79-107
In this paper we introduce the notion of Poincar\'e DGCAs of Hodge type, which is a subclass of Poincar\'e DGCAs encompassing the de Rham algebras of closed orientable manifolds. Then we introduce the notion of the small algebra and the small quotien
Externí odkaz:
http://arxiv.org/abs/1902.08406
Autor:
Hirata, Yuki, Kawai, Kotaro, Kato, Toyohiro, Fujimoto, Hayata, Tameno, Yuto, Ishikawa, Takumi, Matsuoka, Hiroshige, Akasaka, Hiroki, Ohtake, Naoto
Publikováno v:
In Surface & Coatings Technology 15 May 2023 460
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.