Zobrazeno 1 - 10
of 55
pro vyhledávání: '"Kavousanakis M"'
Autor:
Chapman, S. Jon, Kavousanakis, M., Charalampidis, E. G., Kevrekidis, I. G., Kevrekidis, P. G.
In the present work we revisit the problem of the generalized Korteweg-de Vries equation parametrically, as a function of the relevant nonlinearity exponent, to examine the emergence of blow-up solutions, as traveling waveforms lose their stability p
Externí odkaz:
http://arxiv.org/abs/2310.13770
Autor:
Chapman, S. J., Kavousanakis, M. E., Charalampidis, E. G., Kevrekidis, I. G., Kevrekidis, P. G.
The nonlinear Schroedinger model is a prototypical dispersive wave equation that features finite time blowup, either for supercritical exponents (for fixed dimension) or for supercritical dimensions (for fixed nonlinearity exponent). Upon identifying
Externí odkaz:
http://arxiv.org/abs/2201.13051
Autor:
Lampropoulos, I., Kavousanakis, M.
We present a two-dimensional continuum model of tumor growth, which treats the tissue as a composition of six distinct fluid phases; their dynamics are governed by the equations of mass and momentum conservation. Our model divides the cancer cells ph
Externí odkaz:
http://arxiv.org/abs/2102.05937
Publikováno v:
Phys. Rev. E 104, 044202 (2021)
The study of nonlinear waves that collapse in finite time is a theme of universal interest, e.g. within optical, atomic, plasma physics, and nonlinear dynamics. Here we revisit the quintessential example of the nonlinear Schrodinger equation and syst
Externí odkaz:
http://arxiv.org/abs/2008.08968
Autor:
Lampropoulos, I., Kavousanakis, M.
Publikováno v:
In Chemical Engineering Science 5 October 2023 280
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Chemical Engineering Science 21 September 2022 259
Publikováno v:
In Computers and Chemical Engineering May 2022 161
Among the different computational approaches modelling the dynamics of isogenic cell populations, discrete stochastic models can describe with sufficient accuracy the evolution of small size populations. However, for a systematic and efficient study
Externí odkaz:
http://arxiv.org/abs/1312.3647
Publikováno v:
In Computers and Chemical Engineering 8 May 2019 124:124-132