Zobrazeno 1 - 10
of 104
pro vyhledávání: '"Kavallaris, Nikos"'
In this paper, we study a stochastic parabolic problem involving a nonlocal diffusion operator associated with nonlocal Robin-type boundary conditions. The stochastic dynamics under consideration are driven by a mixture of a classical Brownian and a
Externí odkaz:
http://arxiv.org/abs/2305.05946
Autor:
Kavallaris, Nikos I., Suzuki, Takashi
We study the problem of convergence of the normalized Ricci flow evolving on a compact manifold $\Omega$ without boundary. In \cite{KS10, KS15} we derived, via PDE techniques, global-in-time existence of the classical solution and pre-compactness of
Externí odkaz:
http://arxiv.org/abs/2101.05554
In the current work we study a stochastic parabolic problem. The underlying problem is actually motivated by the study of an idealized electrically actuated MEMS (Micro-Electro-Mechanical System) device in the case of random fluctuations of the poten
Externí odkaz:
http://arxiv.org/abs/2012.10922
In the current paper, we provide a thorough investigation of the blowing up behaviour induced via diffusion of the solution of the following non local problem \begin{equation*} \left\{\begin{array}{rcl} \partial_t u &=& \Delta u - u + \displaystyle{\
Externí odkaz:
http://arxiv.org/abs/2010.09867
Autor:
Barua, Arnab, Syga, Simon, Mascheroni, Pietro, Kavallaris, Nikos, Meyer-Hermann, Michael, Deutsch, Andreas, Hatzikirou, Haralampos
Cellular decision making allows cells to assume functionally different phenotypes in response to microenvironmental cues, without genetic change. It is an open question, how individual cell decisions influence the dynamics at the tissue level. Here,
Externí odkaz:
http://arxiv.org/abs/2005.02849
In the current work we study a nonlocal parabolic problem with Robin boundary conditions. The problem arises from the study of an idealized electrically actuated MEMS (Micro-Electro-Mechanical System) device. Initially we study the steady-state probl
Externí odkaz:
http://arxiv.org/abs/1906.12093
The purpose of the current paper is to unveil the key mechanism which is responsible for the occurrence of {\it Turing-type instability} for a non-local Fisher-KPP type model. In particular, we prove that the solution of the considered non-local Fish
Externí odkaz:
http://arxiv.org/abs/1905.05495
The main purpose of the current paper is to contribute towards the comprehension of the dynamics of the shadow system of a singular Gierer-Meinhardt model on an isotropically evolving domain. In the case where the inhibitor's response to the activato
Externí odkaz:
http://arxiv.org/abs/1903.10051
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.