Zobrazeno 1 - 10
of 74
pro vyhledávání: '"Kaufmann, Uriel"'
Autor:
Kaufmann, Uriel, Milne, Leandro
Let $\Omega=(a,b)\subset\mathbb{R}$, $0\leq m,n\in L^{1}(\Omega)$, $\lambda,\mu>0$ be real parameters, and $\phi:\mathbb{R}\rightarrow\mathbb{R}$ be an odd increasing homeomorphism. In this paper we consider the existence of positive solutions for pr
Externí odkaz:
http://arxiv.org/abs/2302.12350
We consider the problem $$ (P_\lambda)\quad -\Delta_{p}u=\lambda u^{p-1}+a(x)u^{q-1},\quad u\geq0\quad\mbox{ in }\Omega $$ under Dirichlet or Neumann boundary conditions. Here $\Omega$ is a smooth bounded domain of $\mathbb{R}^{N}$ ($N\geq1$), $\lamb
Externí odkaz:
http://arxiv.org/abs/2007.09498
Publikováno v:
Rend. Istit. Mat. Univ. Trieste 52 (2020) 217-241
We review the indefinite sublinear elliptic equation $-\Delta u=a(x)u^{q}$ in a smooth bounded domain $\Omega\subset\mathbb{R}^{N}$, with Dirichlet or Neumann homogeneous boundary conditions. Here $0
Externí odkaz:
http://arxiv.org/abs/2004.01284
We go further in the investigation of the Robin problem $(P_{\alpha})$: $-\Delta u=a(x)u^{q}$ in $\Omega$, $u\geq0$ in $\Omega$, $\partial_{\nu}u=\alpha u$ on $\partial \Omega$; on a bounded domain $\Omega\subset\mathbb{R}^{N}$, with $a$ sign-changin
Externí odkaz:
http://arxiv.org/abs/2001.09315
Let $\Omega\subset\mathbb{R}^{N}$ ($N\geq1$) be a smooth bounded domain, $a\in C(\bar{\Omega})$ a sign-changing function, and $0\leq q<1$. We investigate the Robin problem \[ \begin{cases} -\Delta u=a(x)u^{q} & \mbox{in $\Omega$},\\ u\geq0 & \mbox{in
Externí odkaz:
http://arxiv.org/abs/1901.04019
Let $\Omega\subset\mathbb{R}^{n}$ be a smooth bounded domain and $m\in C(\overline{\Omega})$ be a sign-changing weight function. For $1
Externí odkaz:
http://arxiv.org/abs/1810.05696
Publikováno v:
Adv. Nonlinear Stud. 19(2) (2019) 391-412
We establish the existence of loop type subcontinua of nonnegative solutions for a class of concave-convex type elliptic equations with indefinite weights, under Dirichlet and Neumann boundary conditions. Our approach depends on local and global bifu
Externí odkaz:
http://arxiv.org/abs/1710.07802
We investigate the existence of a curve $q\mapsto u_{q}$, with $q\in(0,1)$, of positive solutions for the problem $(P_{a,q})$: $-\Delta u=a(x)u^{q}$ in $\Omega$, $u=0$ on $\partial\Omega$, where $\Omega$ is a bounded and smooth domain of $\mathbb{R}^
Externí odkaz:
http://arxiv.org/abs/1709.04822
Let $\Omega\subset\mathbb{R}^{N}$ ($N\geq1$) be a bounded and smooth domain and $a:\Omega\rightarrow\mathbb{R}$ be a sign-changing weight satisfying $\int_{\Omega}a<0$. We prove the existence of a positive solution $u_{q}$ for the problem $(P_{a,q})$
Externí odkaz:
http://arxiv.org/abs/1705.07791