Zobrazeno 1 - 10
of 44
pro vyhledávání: '"Kauffman, L. H."'
Publikováno v:
J. Knot Theory and its Ramifications 31:11 (2022), 2250067
In this article we discuss applications of neural networks to recognising knots and, in particular, to the unknotting problem. One of motivations for this study is to understand how neural networks work on the example of a problem for which rigorous
Externí odkaz:
http://arxiv.org/abs/2011.03498
Autor:
Deakin, A. M., Kauffman, L. H.
This paper purports to have: Introduced a new formulation of Quantum Mechanics, explained the apparent disconnect between Quantum Mechanics and General Relativity, explained the observed far field expansion of the Universe (Dark Energy), supplied an
Externí odkaz:
http://arxiv.org/abs/1801.06788
Autor:
Kauffman, L. H., Noyes, H. P.
Publikováno v:
Phys.Lett. A218 (1996) 139-146
We rewrite the 1+1 Dirac equation in light cone coordinates in two significant forms, and solve them exactly using the classical calculus of finite differences. The complex form yields ``Feynman's Checkerboard''---a weighted sum over lattice paths. T
Externí odkaz:
http://arxiv.org/abs/hep-th/9603202
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Gügümcü, N., Kauffman, L. H.
Publikováno v:
Journal of Knot Theory & Its Ramifications; Oct2021, Vol. 30 Issue 11, p1-28, 28p
Publikováno v:
Osaka J. Math. 55, no. 3 (2018), 523-527
Scopus-Elsevier
Scopus-Elsevier
In this paper we give a positive answer to a question raised by Nakamura, Nakanishi, and Satoh concerning an inequality involving crossing numbers of knots. We show it is an equality only for the trefoil and for the figure-eight knots.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::3b6a48934b5610e4abb66f5457c03e66
https://projecteuclid.org/euclid.ojm/1530691241
https://projecteuclid.org/euclid.ojm/1530691241
Publikováno v:
Dennis, L, McNair, J B, Woolf, N J, McNair, P & Kauffman, L H 2018, Building on the known : a quintessential jitterbug . in J B McNair, L Dennis & L H Kauffman (eds), The Mereon Matrix : Everything Connected through (K)nothing . 2 edn, World Scientific, Series on Knots and Everything, vol. 62, pp. 5-27 . https://doi.org/10.1142/9789813233560_0001
Dennis, L, Brender McNair, J, Woolf, N J, McNair, P & Kauffman, L H 2013, Building on the known : a quintessential Jitterbug . in L Dennis, J Brender McNair & L H Kauffman (eds), The Mereon Matrix : unity, perspective and paradox . Elsevier, Elsevier Insights, pp. 3-21 . https://doi.org/10.1016/B978-0-12-404613-9.00001-0
Dennis, L, Brender McNair, J, Woolf, N J, McNair, P & Kauffman, L H 2013, Building on the known : a quintessential Jitterbug . in L Dennis, J Brender McNair & L H Kauffman (eds), The Mereon Matrix : unity, perspective and paradox . Elsevier, Elsevier Insights, pp. 3-21 . https://doi.org/10.1016/B978-0-12-404613-9.00001-0
This chapter presents the First Principles with supportive assertions. First Principles are a translation of the fundamental laws and present a schematic that can be used to build or rebuild a sustainable system of any kind. These principles were det
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9d0bd45d5b5dd4106eb4a9dfa8e9324a
https://vbn.aau.dk/da/publications/8d3aea23-ce61-4abe-9ee4-901d79180acb
https://vbn.aau.dk/da/publications/8d3aea23-ce61-4abe-9ee4-901d79180acb
Autor:
Kauffman, L. H.1,2 Kauffman@uic.edu
Publikováno v:
Optics & Spectroscopy. Aug2005, Vol. 99 Issue 2, p227-232. 6p.
Publikováno v:
Dennis, L, Brender McNair, J, Woolf, N J & Kauffman, L H 2013, The Mereon 120/180 : form informing function . in L Dennis, J Brender McNair & L H Kauffman (eds), The Mereon Matrix : unity, perspective and paradox . Elsevier, Elsevier Insights, pp. 99-149 . https://doi.org/10.1016/B978-0-12-404613-9.00006-X
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::5acac81d38caaa6da75b50e6bdce1f73
https://vbn.aau.dk/da/publications/54204bf4-5cc8-4ad7-a04b-870c16cf33cd
https://vbn.aau.dk/da/publications/54204bf4-5cc8-4ad7-a04b-870c16cf33cd