Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Katy Craig"'
Publikováno v:
Numerische Mathematik. 152:631-662
As a counterpoint to recent numerical methods for crystal surface evolution, which agree well with microscopic dynamics but suffer from significant stiffness that prevents simulation on fine spatial grids, we develop a new numerical method based on t
Publikováno v:
Physical Review D, vol 105, iss 7
Physical Review
Physical Review
Which is the best metric for the space of collider events? Motivated by the success of the Energy Mover's Distance in characterizing collider events, we explore the larger space of unbalanced optimal transport distances, of which the Energy Mover's D
Autor:
Ihsan Topaloglu, Katy Craig
Publikováno v:
Annales de l'Institut Henri Poincaré C, Analyse non linéaire. 37:239-279
Inspired by recent work on minimizers and gradient flows of constrained interaction energies, we prove that these energies arise as the slow diffusion limit of well-known aggregation-diffusion energies. We show that minimizers of aggregation-diffusio
Publikováno v:
Active Particles, Volume 3 ISBN: 9783030933012
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d346731194053ae7255bf68df1bcbf9e
https://doi.org/10.1007/978-3-030-93302-9_4
https://doi.org/10.1007/978-3-030-93302-9_4
Combining the classical theory of optimal transport with modern operator splitting techniques, we develop a new numerical method for nonlinear, nonlocal partial differential equations, arising in models of porous media, materials science, and biologi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::71f8a3388a1f3dd15ba59497e9a416f2
https://doi.org/10.1007/s10208-021-09503-1
https://doi.org/10.1007/s10208-021-09503-1
Publikováno v:
Physical Review
We introduce an efficient framework for computing the distance between collider events using the tools of Linearized Optimal Transport (LOT). This preserves many of the advantages of the recently-introduced Energy Mover's Distance, which quantifies t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::34ede201de55b786d3c9a19afbc3163b
http://arxiv.org/abs/2008.08604
http://arxiv.org/abs/2008.08604
As a counterpoint to classical stochastic particle methods for diffusion, we develop a deterministic particle method for linear and nonlinear diffusion. At first glance, deterministic particle methods are incompatible with diffusive partial different
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f98c42d8a1e748a371f48b6e48f51707
http://hdl.handle.net/10044/1/66347
http://hdl.handle.net/10044/1/66347
Publikováno v:
Active Particles, Volume 2 ISBN: 9783030202965
Given a large ensemble of interacting particles, driven by nonlocal interactions and localized repulsion, the mean-field limit leads to a class of nonlocal, nonlinear partial differential equations known as aggregation-diffusion equations. Over the p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d7186c215433899fb06b39c289f7e77a
https://doi.org/10.1007/978-3-030-20297-2_3
https://doi.org/10.1007/978-3-030-20297-2_3
We consider a congested aggregation model that describes the evolution of a density through the competing effects of nonlocal Newtonian attraction and a hard height constraint. This provides a counterpoint to existing literature on repulsive-attracti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1ceb4526a0670e521cf17be2bd936070
Autor:
Katy Craig, Ihsan Topaloglu
Inspired by numerical studies of the aggregation equation, we study the effect of regularization on nonlocal interaction energies. We consider energies defined via a repulsive-attractive interaction kernel, regularized by convolution with a mollifier
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3525ed5dfa95c3d720e958a7dff09a28
http://arxiv.org/abs/1503.04826
http://arxiv.org/abs/1503.04826