Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Katsuyuki Hagiwara"'
Autor:
Mikiko Nishioka, Tadashi Maezawa, Hiroki Takeuchi, Katsuyuki Hagiwara, Sachiyo Tarui, Mito Sakamoto, Erina Takayama, Hideaki Yajima, Eiji Kondo, Hiroaki Kawato, Hiroyuki Minoura, Ken Sugaya, Aisaku Fukuda, Tomoaki Ikeda
Publikováno v:
Medicina, Vol 59, Iss 10, p 1868 (2023)
Background and Objectives: A relationship between endometrial polypectomy and in vitro fertilization (IVF) pregnancy outcomes has been reported; however, only a few studies have compared polyp removal techniques and pregnancy rates. We investigated w
Externí odkaz:
https://doaj.org/article/a06a513059654f37b16215ee90d98448
Autor:
Hiroki Takeuchi, Tadashi Maezawa, Katsuyuki Hagiwara, Yuki Horage, Tetsuro Hanada, Huang Haipeng, Mito Sakamoto, Mikiko Nishioka, Erina Takayama, Kento Terada, Eiji Kondo, Yasushi Takai, Nao Suzuki, Tomoaki Ikeda
Publikováno v:
Reproductive Medicine and Biology, Vol 22, Iss 1, Pp n/a-n/a (2023)
Abstract Purpose To examine the optimal timing of second ovarian stimulation using the dual stimulation method for good ovarian responders with cancer undergoing oocyte retrieval for fertility preservation. Methods A retrospective analysis was conduc
Externí odkaz:
https://doaj.org/article/9ddd304c20bc46f094234daa056c987d
Publikováno v:
Computational Materials Science. 219:112032
Autor:
Katsuyuki Hagiwara
Publikováno v:
IEICE Transactions on Information and Systems. :2702-2710
Autor:
Katsuyuki Hagiwara
Publikováno v:
Neural Information Processing ISBN: 9783030367107
ICONIP (2)
ICONIP (2)
There have been several studies to relax a bias problem in LASSO (Least Absolute Shrinkage and Selection Operator). In this article, we considered to solve a bias problem of LASSO estimator by scaling and derived a model selection criterion under the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7bff1668cea48c526759e54c691338c8
https://doi.org/10.1007/978-3-030-36711-4_22
https://doi.org/10.1007/978-3-030-36711-4_22
Autor:
Katsuyuki Hagiwara
Publikováno v:
Neurocomputing. 194:360-371
LASSO is known to have a problem of excessive shrinkage at a sparse representation. To analyze this problem in detail, in this paper, we consider a positive scaling for soft-thresholding estimators that are LASSO estimators in an orthogonal regressio
Autor:
Katsuyuki Hagiwara
Publikováno v:
Neural Information Processing ISBN: 9783030041663
ICONIP (1)
ICONIP (1)
A recent research interest on deep neural networks is to understand why deep networks are preferred to shallow networks. In this article, we considered an advantage of a deep structure in realizing a heaviside function in training. This is significan
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ab6d597388659bfe867768966e248d66
https://doi.org/10.1007/978-3-030-04167-0_6
https://doi.org/10.1007/978-3-030-04167-0_6
Autor:
Katsuyuki Hagiwara
Publikováno v:
IEICE Transactions on Information and Systems. :98-106
Autor:
Katsuyuki Hagiwara
Publikováno v:
Neural Information Processing ISBN: 9783319466712
ICONIP (2)
ICONIP (2)
In this article, we considered to assign a single scaling parameter to LASSO estimators for investigating and improving a problem of excessive shrinkage at a sparse representation. This problem is important because it directly affects a quality of mo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f7da4e653664a0017cb59d0b73c35691
https://doi.org/10.1007/978-3-319-46672-9_3
https://doi.org/10.1007/978-3-319-46672-9_3
Autor:
Katsuyuki Hagiwara
Publikováno v:
IEICE Transactions on Information and Systems. :1610-1619
In this paper, we consider a nonparametric regression problem using a learning machine defined by a weighted sum of fixed basis functions, where the number of basis functions, or equivalently, the number of weights, is equal to the number of training