Zobrazeno 1 - 10
of 72
pro vyhledávání: '"Katsabekis, Anargyros"'
The toric ideal $I_A$ is splittable if it has a toric splitting; namely, if there exist toric ideals $I_{A_1}, I_{A_2}$ such that $I_A=I_{A_1}+I_{A_2}$ and $I_{A_i}\not =I_{A}$ for all $1 \leq i \leq 2$. We provide a necessary and sufficient conditio
Externí odkaz:
http://arxiv.org/abs/2410.18467
Autor:
Katsabekis, Anargyros
Publikováno v:
Arch. Math. (Basel) 122 (2024)
Let $C({\bf a})$ be a Gorenstein non-complete intersection monomial curve in the 4-dimensional affine space. There is a vector ${\bf v} \in \mathbb{N}^{4}$ such that for every integer $m \geq 0$, the monomial curve $C({\bf a}+m{\bf v})$ is Gorenstein
Externí odkaz:
http://arxiv.org/abs/2407.00528
Let $G$ be a simple graph on the vertex set $\{v_{1},\ldots,v_{n}\}$. An algebraic object attached to $G$ is the toric ideal $I_G$. We say that $I_G$ is subgraph splittable if there exist subgraphs $G_1$ and $G_2$ of $G$ such that $I_G=I_{G_1}+I_{G_2
Externí odkaz:
http://arxiv.org/abs/2405.09836
Autor:
Katsabekis, Anargyros
Publikováno v:
J. Pure Appl. Algebra 228 (2024), 107706
Let $C$ be a Gorenstein noncomplete intersection monomial curve in the 4-dimensional affine space with defining ideal $I(C)$. In this article, we use the minimal generating set of $I(C)$ to give a criterion for determining whether the tangent cone of
Externí odkaz:
http://arxiv.org/abs/2311.01983
Autor:
Katsabekis, Anargyros
Let $G$ be a connected and simple graph on the vertex set $[n]$. To the graph $G$ one can associate the generalized binomial edge ideal $J_{m}(G)$ in the polynomial ring $R=K[x_{ij}: i \in [m], j \in [n]]$. We provide a lower bound for the cohomologi
Externí odkaz:
http://arxiv.org/abs/2207.02256
Autor:
Katsabekis, Anargyros
Publikováno v:
In Journal of Pure and Applied Algebra October 2024 228(10)
Autor:
Katsabekis, Anargyros
Let $C({\bf n})$ be a complete intersection monomial curve in the 4-dimensional affine space. In this paper we study the complete intersection property of the monomial curve $C({\bf n}+w{\bf v})$, where $w>0$ is an integer and ${\bf v} \in \mathbb{N}
Externí odkaz:
http://arxiv.org/abs/1707.08453
Autor:
Katsabekis, Anargyros
Publikováno v:
Archiv der Mathematik 109 (2017), 323-334
In this paper, we investigate the arithmetical rank of a binomial ideal $J$. We provide lower bounds for the binomial arithmetical rank and the $J$-complete arithmetical rank of $J$. Special attention is paid to the case where $J$ is the binomial edg
Externí odkaz:
http://arxiv.org/abs/1609.03710
Autor:
Katsabekis, Anargyros
Let $C$ be a Gorenstein non complete intersection monomial curve in the 4-dimensional affine space. In this paper we study the minimal number of generators of the tangent cone of $C$. Special attention will be paid to the case where $C$ has Cohen-Mac
Externí odkaz:
http://arxiv.org/abs/1608.07100
Autor:
Katsabekis, Anargyros
Publikováno v:
Journal of Algebra & Its Applications; Feb2025, Vol. 24 Issue 2, p1-14, 14p