Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Katrin Honauer"'
Autor:
Lena Maier-Hein, Matthias Eisenmann, Annika Reinke, Sinan Onogur, Marko Stankovic, Patrick Scholz, Tal Arbel, Hrvoje Bogunovic, Andrew P. Bradley, Aaron Carass, Carolin Feldmann, Alejandro F. Frangi, Peter M. Full, Bram van Ginneken, Allan Hanbury, Katrin Honauer, Michal Kozubek, Bennett A. Landman, Keno März, Oskar Maier, Klaus Maier-Hein, Bjoern H. Menze, Henning Müller, Peter F. Neher, Wiro Niessen, Nasir Rajpoot, Gregory C. Sharp, Korsuk Sirinukunwattana, Stefanie Speidel, Christian Stock, Danail Stoyanov, Abdel Aziz Taha, Fons van der Sommen, Ching-Wei Wang, Marc-André Weber, Guoyan Zheng, Pierre Jannin, Annette Kopp-Schneider
Publikováno v:
Nature Communications, Vol 9, Iss 1, Pp 1-13 (2018)
Biomedical image analysis challenges have increased in the last ten years, but common practices have not been established yet. Here the authors analyze 150 recent challenges and demonstrate that outcome varies based on the metrics used and that limit
Externí odkaz:
https://doaj.org/article/38c338af34d545ae996e15b163f6024c
Autor:
Lena Maier-Hein, Matthias Eisenmann, Annika Reinke, Sinan Onogur, Marko Stankovic, Patrick Scholz, Tal Arbel, Hrvoje Bogunovic, Andrew P. Bradley, Aaron Carass, Carolin Feldmann, Alejandro F. Frangi, Peter M. Full, Bram van Ginneken, Allan Hanbury, Katrin Honauer, Michal Kozubek, Bennett A. Landman, Keno März, Oskar Maier, Klaus Maier-Hein, Bjoern H. Menze, Henning Müller, Peter F. Neher, Wiro Niessen, Nasir Rajpoot, Gregory C. Sharp, Korsuk Sirinukunwattana, Stefanie Speidel, Christian Stock, Danail Stoyanov, Abdel Aziz Taha, Fons van der Sommen, Ching-Wei Wang, Marc-André Weber, Guoyan Zheng, Pierre Jannin, Annette Kopp-Schneider
Publikováno v:
Nature Communications, Vol 10, Iss 1, Pp 1-2 (2019)
In the original version of this Article the values in the rightmost column of Table 1 were inadvertently shifted relative to the other columns. This has now been corrected in the PDF and HTML versions of the Article.
Externí odkaz:
https://doaj.org/article/dd90ed1e22204ea3b8b7061d00f522a2
Publikováno v:
Proceedings of the 3rd Workshop on Machine Learning and Systems.
Autor:
Maximilian Diebold, Marcel Gutsche, Anna Alperovich, Ole Johannsen, Shuo Zhang, Jaesik Park, Marco Carli, Michele Brizzi, Hae-Gon Jeon, Yu-Wing Tai, Sven Wanner, Bastian Goldluecke, Jinsun Park, Yunsu Bok, Zhang Xiong, Hao Sheng, Jingyi Yu, Qing Wang, Lipeng Si, Katrin Honauer, In So Kweon, Antonin Sulc, Gyeongmin Choe, Michael Strecke, Hendrik Schilling, Hao Zhu, Federica Battisti, Ting-Chun Wang
Publikováno v:
CVPR Workshops
This paper presents the results of the depth estimation challenge for dense light fields, which took place at the second workshop on Light Fields for Computer Vision (LF4CV) in conjunction with CVPR 2017. The challenge consisted of submission to a re
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5ffa868510b01306b9d4840d36d0d24d
http://hdl.handle.net/11577/3363391
http://hdl.handle.net/11577/3363391
Autor:
Gustavo Fernández Domínguez, Daniel Steininger, Markus Murschitz, Katrin Honauer, Oliver Zendel
Publikováno v:
Computer Vision – ECCV 2018-15th European Conference, Munich, Germany, September 8–14, 2018, Proceedings, Part VI
Computer Vision – ECCV 2018 ISBN: 9783030012304
ECCV (6)
Lecture Notes in Computer Science
Lecture Notes in Computer Science-Computer Vision – ECCV 2018
Computer Vision – ECCV 2018 ISBN: 9783030012304
ECCV (6)
Lecture Notes in Computer Science
Lecture Notes in Computer Science-Computer Vision – ECCV 2018
Test datasets should contain many different challenging aspects so that the robustness and real-world applicability of algorithms can be assessed. In this work, we present a new test dataset for semantic and instance segmentation for the automotive d
Autor:
Oskar Maier, Carolin Feldmann, Wiro J. Niessen, Bennett A. Landman, Michal Kozubek, Peter M. Full, Christian Stock, Patrick Scholz, Hrvoje Bogunovic, Katrin Honauer, Keno März, Marko Stankovic, Korsuk Sirinukunwattana, Ching-Wei Wang, Henning Müller, Nasir M. Rajpoot, Aaron Carass, Sinan Onogur, Alejandro F. Frangi, Stefanie Speidel, Peter Neher, Bram van Ginneken, Matthias Eisenmann, Pierre Jannin, Bjoern H. Menze, Allan Hanbury, Lena Maier-Hein, Annika Reinke, Guoyan Zheng, Gregory C. Sharp, Danail Stoyanov, Marc-André Weber, Andrew P. Bradley, Abdel Aziz Taha, Tal Arbel, Fons van der Sommen, Klaus H. Maier-Hein, Annette Kopp-Schneider
Publikováno v:
Nature Communications
Nature Communications, 2018, 9 (1), pp.5217. ⟨10.1038/s41467-018-07619-7⟩
Nature Communications, Nature Publishing Group, 2018, 9 (1), pp.5217. ⟨10.1038/s41467-018-07619-7⟩
Nature Communications, 9
Nature Communications, Vol 9, Iss 1, Pp 1-13 (2018)
Nature Communications, 9:5217. Nature Publishing Group
Nature Communications, 9(1):5217. Nature Publishing Group
Nature Communications, 2018, 9 (1), pp.5217. ⟨10.1038/s41467-018-07619-7⟩
Nature Communications, Nature Publishing Group, 2018, 9 (1), pp.5217. ⟨10.1038/s41467-018-07619-7⟩
Nature Communications, 9
Nature Communications, Vol 9, Iss 1, Pp 1-13 (2018)
Nature Communications, 9:5217. Nature Publishing Group
Nature Communications, 9(1):5217. Nature Publishing Group
International challenges have become the standard for validation of biomedical image analysis methods. Given their scientific impact, it is surprising that a critical analysis of common practices related to the organization of challenges has not yet
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::081fe9896f11b112e019a883fdc3920b
https://hal.science/hal-01958848
https://hal.science/hal-01958848
Autor:
Andrew P. Bradley, Abdel Aziz Taha, Oskar Maier, Sinan Onogur, Peter M. Full, Fons van der Sommen, Patrick Scholz, Nasir M. Rajpoot, Klaus H. Maier-Hein, Stefanie Speidel, Marko Stankovic, Bram van Ginneken, Peter F. Neher, Bennett A. Landman, Michal Kozubek, Alejandro F. Frangi, Christian Stock, Annika Reinke, Annette Kopp-Schneider, Pierre Jannin, Bjoern H. Menze, Carolin Feldmann, Tal Arbel, Aaron Carass, Katrin Honauer, Marc-André Weber, Keno März, Korsuk Sirinukunwattana, Ching-Wei Wang, Gregory C. Sharp, Allan Hanbury, Danail Stoyanov, Wiro J. Niessen, Hrvoje Bogunovic, Matthias Eisenmann, Guoyan Zheng, Lena Maier-Hein, Henning Müller
Publikováno v:
Nature Communications, Vol 10, Iss 1, Pp 1-2 (2019)
Nature Communications
Nature Communications
International challenges have become the standard for validation of biomedical image analysis methods. Given their scientific impact, it is surprising that a critical analysis of common practices related to the organization of challenges has not yet
Publikováno v:
Computer Vision – ACCV 2016 ISBN: 9783319541860
ACCV (3)
ACCV (3)
In computer vision communities such as stereo, optical flow, or visual tracking, commonly accepted and widely used benchmarks have enabled objective comparison and boosted scientific progress.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5bbb70a4d233d0c9835318a79369bb03
https://doi.org/10.1007/978-3-319-54187-7_2
https://doi.org/10.1007/978-3-319-54187-7_2
Autor:
Mohsen Rahimimoghaddam, Jonas Andrulis, Daniel Kondermann, Katrin Honauer, Bernd Jähne, Alexander Brock, Karsten Krispin, Rahul Nair, Claus Brenner, Sabine Hofmann, Burkhard Gussefeld
Publikováno v:
CVPR Workshops
Recent advances in autonomous driving require more and more highly realistic reference data, even for difficult situations such as low light and bad weather. We present a new stereo and optical flow dataset to complement existing benchmarks. It was s
Publikováno v:
Advances in Visual Computing ISBN: 9783319508344
ISVC (1)
ISVC (1)
Optical flow ground truth generated by computer graphics has many advantages. For example, we can systematically vary scene parameters to understand algorithm sensitivities. But is synthetic ground truth realistic enough? Appropriate material models
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::297aa8508632673c350903c368d6ab73
https://doi.org/10.1007/978-3-319-50835-1_8
https://doi.org/10.1007/978-3-319-50835-1_8