Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Katja Hauser"'
Publikováno v:
JID Innovations, Vol 4, Iss 6, Pp 100303- (2024)
Early cutaneous squamous cell carcinoma (cSCC) diagnosis is essential to initiate adequate targeted treatment. Noninvasive diagnostic technologies could overcome the need of multiple biopsies and reduce tumor recurrence. To assess performance of noni
Externí odkaz:
https://doaj.org/article/f9ec33c803664609a30429570e6af737
Publikováno v:
Nature Communications, Vol 15, Iss 1, Pp 1-3 (2024)
Externí odkaz:
https://doaj.org/article/74ebb4d7767242d3b0fe8cf09ff46760
Autor:
Tirtha Chanda, Katja Hauser, Sarah Hobelsberger, Tabea-Clara Bucher, Carina Nogueira Garcia, Christoph Wies, Harald Kittler, Philipp Tschandl, Cristian Navarrete-Dechent, Sebastian Podlipnik, Emmanouil Chousakos, Iva Crnaric, Jovana Majstorovic, Linda Alhajwan, Tanya Foreman, Sandra Peternel, Sergei Sarap, İrem Özdemir, Raymond L. Barnhill, Mar Llamas-Velasco, Gabriela Poch, Sören Korsing, Wiebke Sondermann, Frank Friedrich Gellrich, Markus V. Heppt, Michael Erdmann, Sebastian Haferkamp, Konstantin Drexler, Matthias Goebeler, Bastian Schilling, Jochen S. Utikal, Kamran Ghoreschi, Stefan Fröhling, Eva Krieghoff-Henning, Reader Study Consortium, Titus J. Brinker
Publikováno v:
Nature Communications, Vol 15, Iss 1, Pp 1-17 (2024)
Abstract Artificial intelligence (AI) systems have been shown to help dermatologists diagnose melanoma more accurately, however they lack transparency, hindering user acceptance. Explainable AI (XAI) methods can help to increase transparency, yet oft
Externí odkaz:
https://doaj.org/article/a7c398cf0b3b4b35ad5fc17b7f22b907
Autor:
Alexander Kurz, Katja Hauser, Hendrik Alexander Mehrtens, Eva Krieghoff-Henning, Achim Hekler, Jakob Nikolas Kather, Stefan Fröhling, Christof von Kalle, Titus Josef Brinker
Publikováno v:
JMIR Medical Informatics, Vol 10, Iss 8, p e36427 (2022)
BackgroundDeep neural networks are showing impressive results in different medical image classification tasks. However, for real-world applications, there is a need to estimate the network’s uncertainty together with its prediction. ObjectiveIn th
Externí odkaz:
https://doaj.org/article/211c5f534c9d43fb9e4d4b2511b34da3
Autor:
Katja Hauser, Alexander Kurz, Sarah Haggenmüller, Roman C. Maron, Christof von Kalle, Jochen S. Utikal, Friedegund Meier, Sarah Hobelsberger, Frank F. Gellrich, Mildred Sergon, Axel Hauschild, Lars E. French, Lucie Heinzerling, Justin G. Schlager, Kamran Ghoreschi, Max Schlaak, Franz J. Hilke, Gabriela Poch, Heinz Kutzner, Carola Berking, Markus V. Heppt, Michael Erdmann, Sebastian Haferkamp, Dirk Schadendorf, Wiebke Sondermann, Matthias Goebeler, Bastian Schilling, Jakob N. Kather, Stefan Fröhling, Daniel B. Lipka, Achim Hekler, Eva Krieghoff-Henning, Titus J. Brinker
Publikováno v:
European Journal of Cancer. 167:54-69
Due to their ability to solve complex problems, deep neural networks (DNNs) are becoming increasingly popular in medical applications. However, decision-making by such algorithms is essentially a black-box process that renders it difficult for physic
Publikováno v:
Seminar: A Journal of Germanic Studies. 57:217-242
The Russian writer Ivan Sergeevič Turgenev (1818–83), who lived in Western Europe (Germany, England, and France) during the second half of his life, is considered the most important mediator between Russia and Europe in the nineteenth century due