Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Katharina Jochemko"'
Autor:
Katharina Jochemko
Publikováno v:
International Mathematics Research Notices. 2022:11427-11447
We study rational generating functions of sequences $\{a_n\}_{n\geq 0}$ that agree with a polynomial and investigate symmetric decompositions of the numerator polynomial for subsequences $\{a_{rn}\}_{n\geq 0}$. We prove that if the numerator polynomi
The Ehrhart polynomial $ehr_P (n)$ of a lattice polytope $P$ gives the number of integer lattice points in the $n$-th dilate of $P$ for all integers $n\geq 0$. The degree of $P$ is defined as the degree of its $h^\ast$-polynomial, a particular transf
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::866053005509f338c88133e4e5a8dd7c
http://arxiv.org/abs/2204.13036
http://arxiv.org/abs/2204.13036
Autor:
Katharina Jochemko
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783030983260
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cc59317d27389caed5c603cc52029179
https://doi.org/10.1007/978-3-030-98327-7_10
https://doi.org/10.1007/978-3-030-98327-7_10
Over a decade ago De Loera, Haws and K\"oppe conjectured that Ehrhart polynomials of matroid polytopes have only positive coefficients and that the coefficients of the corresponding $h^*$-polynomials form a unimodal sequence. The first of these inten
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8d2afd9d5deadd5ab7914900ae77c607
http://arxiv.org/abs/2106.08183
http://arxiv.org/abs/2106.08183
Autor:
Petter Brändén, Katharina Jochemko
Eulerian polynomials are fundamental in combinatorics and algebra. In this paper we study the linear transformation $\mathcal{A} : \mathbb{R}[t] \to \mathbb{R}[t]$ defined by $\mathcal{A}(t^n) = A_n(t)$, where $A_n(t)$ denotes the $n$-th Eulerian pol
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::29d43fd8a8c9f805d5edd4d2119b2b13
http://arxiv.org/abs/2103.00890
http://arxiv.org/abs/2103.00890
Publikováno v:
Oberwolfach Reports. 14:2659-2701
Autor:
Raman Sanyal, Katharina Jochemko
Publikováno v:
Advances in Mathematics. 319:630-652
Combinatorial mixed valuations associated to translation-invariant valuations on polytopes are introduced. In contrast to the construction of mixed valuations via polarization, combinatorial mixed valuations reflect and often inherit properties of in
Autor:
Katharina Jochemko
Publikováno v:
International Mathematics Research Notices. 2018:4780-4798
We study real sequences $\{a_{n}\}_{n\in \mathbb{N}}$ that eventually agree with a polynomial. We show that if the numerator polynomial of its rational generating series is of degree $s$ and has only nonnegative coefficients, then the numerator polyn
Autor:
Katharina Jochemko
Publikováno v:
Algebraic and Geometric Combinatorics on Lattice Polytopes.
We investigate arithmetic, geometric and combinatorial properties of symmetric edge polytopes. We give a complete combinatorial description of their facets. By combining Gr\"obner basis techniques, half-open decompositions and methods for interlacing
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e26c0a633f7b62c26af32dea90e865ff
http://arxiv.org/abs/1807.07678
http://arxiv.org/abs/1807.07678