Zobrazeno 1 - 10
of 181
pro vyhledávání: '"Katanaev, M."'
Autor:
Afanasev, D. E., Katanaev, M. O.
One parameter family of exact solutions in general relativity with a scalar field has been found using the Liouville metric. The scalar field potential is exponential and bounded from below. This model is interesting because, in particular, the solut
Externí odkaz:
http://arxiv.org/abs/2410.03799
Autor:
Afanasev, D. E., Katanaev, M. O.
New one parameter family of exact solutions in General Relativity with a scalar field is found. The metric is of Liouville type which admits complete separation of variables in the geodesic Hamilton-Jacobi equation. This solution exists for the expon
Externí odkaz:
http://arxiv.org/abs/2405.09422
Autor:
Katanaev, M. O.
Publikováno v:
Phys. Scr. 99 (2024) 067001
This is a detailed answer to the criticism of my paper.
Comment: 2 pages; reply to arXiv:2311.14330
Comment: 2 pages; reply to arXiv:2311.14330
Externí odkaz:
http://arxiv.org/abs/2405.03737
Autor:
Katanaev, M. O.
Publikováno v:
Phys. Scr. 98 (2023)104001
We list all metrics of arbitrary signature in four dimensions which admit complete separation of variables in the Hamilton--Jacobi equation for geodesic Hamiltonians. There are only ten classes of separable metrics admitting commuting Killing vector
Externí odkaz:
http://arxiv.org/abs/2311.12907
Autor:
Katanaev, M. O.
We consider a (pseudo)Riemannian manifold of arbitrary dimension. The Hamilton-Jacobi equation for geodesic Hamiltonian admits complete separation of variables for some (separable) metrics in some (separable) coordinate systems. Separable metrics are
Externí odkaz:
http://arxiv.org/abs/2305.02222
Autor:
Katanaev, M. O.
Publikováno v:
Proc. Steklov Inst. Math. 309(2020)183-193; Trudy MIAN 309(2020)198-209
We propose the action for the nonrelativistic string invariant under general coordinate transformations on the string worldsheet. The Hamiltonian formulation for the nonrelativistic string is given. Particular solutions of the Euler-Lagrange equation
Externí odkaz:
http://arxiv.org/abs/2111.00942
Autor:
Katanaev, M. O.
Publikováno v:
Eur. Phys. J. C 81(2021)825
A general analytic spherically symmetric solution of the Bogomol'nyi equations is found. It depends on two constants and one arbitrary function on radius and contains the Bogomol'nyi-Prasad-Sommerfield and Singleton solutions as particular cases. Thu
Externí odkaz:
http://arxiv.org/abs/2110.11761
Autor:
Katanaev, M. O.
Publikováno v:
Class. Quantum Grav. 38(2020)015014
We propose four simple Lagrangians for gravity models with dynamical torsion which are free from ghosts and tachyons. The torsion propagates two massive or massless particles of spin 1^\pm and 0^\pm besides the massless graviton 2^+ propagated by met
Externí odkaz:
http://arxiv.org/abs/2109.09546
Autor:
Katanaev, M. O.
Publikováno v:
Proc. Steklov Inst. Math. 313(2021)1-21; Trudy MIAN 313(2021)1-22
In the geometric theory of defects, media with a spin structure, for example, ferromagnet, is considered as a manifold with given Riemann--Cartan geometry. We consider the case with the Euclidean metric corresponding to the absence of elastic deforma
Externí odkaz:
http://arxiv.org/abs/2108.07177
Autor:
Katanaev, M.
It was supposed for fifty years that the conformal gauge in string theory exists globally on the whole string world sheet. In fact, almost all results were obtained under this assumption. However, this statement was proved only locally in some neighb
Externí odkaz:
http://arxiv.org/abs/2106.05839