Zobrazeno 1 - 10
of 114
pro vyhledávání: '"Kassabov, Ognian"'
In this paper we give Weierstrass-type representation formulas for the null curves and for the minimal Lorentz surfaces in the Minkowski 3-space $\mathbb R^3_1$ using real-valued functions. Applying the Weierstrass-type representations for the null c
Externí odkaz:
http://arxiv.org/abs/2402.17850
Autor:
Kassabov, Ognian, Milousheva, Velichka
Publikováno v:
Serdica Math. J. 49 (2023), 301-316
We study minimal timelike surfaces in $\mathbb R^3_1$ using a special Weierstrass-type formula in terms of holomorphic functions defined in the algebra of the double (split-complex) numbers. We present a method of obtaining an equation of a minimal t
Externí odkaz:
http://arxiv.org/abs/2310.10129
We consider Lorentz surfaces in $\mathbb R^3_1$ satisfying the condition $H^2-K\neq 0$, where $K$ and $H$ are the Gauss curvature and the mean curvature, respectively, and call them Lorentz surfaces of general type. For this class of surfaces we intr
Externí odkaz:
http://arxiv.org/abs/2111.10599
A minimal Lorentz surface in $\mathbb R^4_2$ is said to be of general type if its corresponding null curves are non-degenerate. These surfaces admit canonical isothermal and canonical isotropic coordinates. It is known that the Gauss curvature $K$ an
Externí odkaz:
http://arxiv.org/abs/2108.00585
Autor:
Kassabov, Ognian, Milousheva, Velichka
Publikováno v:
Mediterr. J. Math. Volume 17, issue 6, 199 (2020)
The minimal Lorentzian surfaces in $\mathbb{R}^4_2$ whose first normal space is two-dimensional and whose Gauss curvature $K$ and normal curvature $\varkappa$ satisfy $K^2-\varkappa^2 >0$ are called minimal Lorentzian surfaces of general type. These
Externí odkaz:
http://arxiv.org/abs/2107.14609
Autor:
Kassabov, Ognian
Canonical principal parameters are introduced for surfaces in $\mathbb R^3$ without umbilical points. It is proved that in these parameters the surface is determined (up to position in space) by a pair of invariants satisfying a partial differential
Externí odkaz:
http://arxiv.org/abs/1902.02254
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 June 2022 510(1)
Autor:
Kassabov, Ognian
Publikováno v:
Социологически проблеми / Sociological Problems. 53(1):33-42
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=968072
Autor:
Kassabov, Ognian
Publikováno v:
Философски алтернативи / Philosophical Alternatives. XXX(2):5-16
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=947991