Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Kartik Prasanna"'
Autor:
Atsushi Ichino, Kartik Prasanna
Publikováno v:
Contemporary Mathematics ISBN: 9781470448943
Generalised Heegner cycles were introduced in Bertolini et al. (Duke Math J 162(6), 1033–1148, 2013) as a variant of Heegner cycles on Kuga–Sato varieties. The first main result of this article is a formula for the image of these cycles under the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7575c304e8de2dd728f40f3d2113618f
https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&origin=inward&scp=85091144743
https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&origin=inward&scp=85091144743
Publikováno v:
Journal für die reine und angewandte Mathematik (Crelles Journal). 2017:21-86
We give evidence for the refined version of the Beilinson–Bloch conjecture involving coniveau filtrations, by studying several infinite families of CM motives (indexed by the integers r ≥ 1 {r\geq 1} ) that are irreducible of Hodge type ( 2 r
Publikováno v:
International Mathematics Research Notices. 2014:745-793
We outline a new construction of rational points on CM elliptic curves, using cycles on higher-dimensional varieties, contingent on certain cases of the Tate conjecture. This construction admits of complex and p-adic analogs that are defined independ
Autor:
Kartik Prasanna
Publikováno v:
Canadian Journal of Mathematics. 62:400-414
We study p-indivisibility of the central values L(1, Ed) of quadratic twists Ed of a semi-stable elliptic curve E of conductor N. A consideration of the conjecture of Birch and Swinnerton-Dyer shows that the set of quadratic discriminants d splits na
Autor:
Kartik Prasanna
Publikováno v:
Inventiones mathematicae. 176:521-600
We prove that the theta correspondence for the dual pair \(({\widetilde{\textup{SL}_2}}, \textit{PB}^\times)\), for B an indefinite quaternion algebra over ℚ, acting on modular forms of odd square-free level, preserves rationality and p-integrality
Autor:
Kartik Prasanna
Publikováno v:
Annals of Mathematics. 163:901-967
We prove integrality of the ratiof, f� /� g, g� (outside an explicit finite set of primes), where g is an arithmetically normalized holomorphic newform on a Shimura curve, f is a normalized Hecke eigenform on GL(2) with the same Hecke eigenvalu
Publikováno v:
Duke Math. J. 162, no. 6 (2013), 1033-1148
This article studies a distinguished collection of so-called generalized Heegner cycles in the product of a Kuga–Sato variety with a power of a CM elliptic curve. Its main result is a $p$ -adic analogue of the Gross–Zagier formula which relates t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4bade19a9f58396a737af7146aa1d117
http://projecteuclid.org/download/pdf_1/euclid.dmj/1366639399
http://projecteuclid.org/download/pdf_1/euclid.dmj/1366639399
This article presents a new proof of a theorem of Karl Rubin relating values of the Katz p-adic L-function of an imaginary quadratic field at certain points outside its range of classical interpolation to the formal group logarithms of rational point
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d8332bfaf84021ada98d5f742b3b8d78