Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Karoline Moe"'
Autor:
Karoline Moe, Eivind Schjelderup Skarpsno, Tom Ivar Lund Nilsen, Paul Jarle Mork, Lene Aasdahl
Publikováno v:
BMC Public Health, Vol 24, Iss 1, Pp 1-9 (2024)
Abstract Background Family factors, sleep, and physical activity have previously been associated with risk of sick leave and disability benefits due to musculoskeletal disorders. However, how these factors act during adolescence and young adulthood i
Externí odkaz:
https://doaj.org/article/3e8c7e6120b246b5955a24b72c424ddf
Autor:
Anna Marcuzzi, Paul Jarle Mork, Lene Aasdahl, Eivind Skarpsno, Karoline Moe, Tom Ivar Lund Nilsen
Publikováno v:
BMC Musculoskeletal Disorders, Vol 25, Iss 1, Pp 1-11 (2024)
Abstract Background Musculoskeletal pain is one of the leading causes of work productivity loss. Long-term conditions (LTCs) commonly occur alongside musculoskeletal pain. However, the incidence of sick leave and disability pension according to LTC s
Externí odkaz:
https://doaj.org/article/7d1a4c10ce5441158f9f080fe39acb6a
Autor:
Torgunn Karoline Moe
Publikováno v:
Le Matematiche, Vol 69, Iss 2, Pp 295-318 (2014)
The purpose of this article is to shed light on the question of how many and what kind of cusps a rational cuspidal curve on a Hirzebruch surface can have. Our main result is a list of rational cuspidal curves with four cusps, their type, cuspidal co
Externí odkaz:
https://doaj.org/article/0fab7837370a471da06efef02ffb018e
In an article from 1865, Arthur Cayley claims that given a plane algebraic curve there exists an associated 2-Hessian curve that intersects it in its sextactic points. In this paper we fix an error in Cayley's calculations and provide the correct def
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a01264fc1805b6ac2016c6f114e3d258
http://arxiv.org/abs/1709.01698
http://arxiv.org/abs/1709.01698
Autor:
Maciej Borodzik, Torgunn Karoline Moe
Publikováno v:
Michigan Math. J. 65, iss. 4 (2016), 761-797
We study rational cuspidal curves in Hirzebruch surfaces. We provide two obstructions for the existence of rational cuspidal curves in Hirzebruch surfaces with prescribed types of singular points. The first result comes from Heegaard--Floer theory an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5012d963592004445e59898882d3d409
http://projecteuclid.org/euclid.mmj/1480734019
http://projecteuclid.org/euclid.mmj/1480734019
Autor:
Torgunn Karoline Moe, Nikolay Qviller
Publikováno v:
Mathematische Zeitschrift. 275:529-548
We provide a generalization of the algorithm of Eklund-Jost-Peterson for computing Segre classes of closed subschemes of projective k-space. The algorithm is here generalized to computing the Segre classes of closed subschemes of smooth projective to
Autor:
Moe, Karoline1 (AUTHOR) karoline.moe@ntnu.no, Skarpsno, Eivind Schjelderup1,2 (AUTHOR), Nilsen, Tom Ivar Lund1 (AUTHOR), Mork, Paul Jarle1 (AUTHOR), Aasdahl, Lene1,3 (AUTHOR)
Publikováno v:
BMC Public Health. 9/27/2024, Vol. 24 Issue 1, p1-9. 9p.
Autor:
Marcuzzi, Anna1,2,3 (AUTHOR) anna.marcuzzi@ntnu.no, Mork, Paul Jarle1 (AUTHOR), Aasdahl, Lene1,4 (AUTHOR), Skarpsno, Eivind1 (AUTHOR), Moe, Karoline1 (AUTHOR), Nilsen, Tom Ivar Lund1 (AUTHOR)
Publikováno v:
BMC Musculoskeletal Disorders. 4/8/2024, Vol. 25 Issue 1, p1-11. 11p.
Autor:
Skei, Nina Vibeche, Moe, Karoline, Nilsen, Tom Ivar Lund, Aasdahl, Lene, Prescott, Hallie C., Damås, Jan Kristian, Gustad, Lise Tuset
Publikováno v:
Critical Care; 11/15/2023, Vol. 27 Issue 1, p1-14, 14p