Zobrazeno 1 - 10
of 75
pro vyhledávání: '"Karl-Theodor Sturm"'
Autor:
Karl-Theodor Sturm
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9789811946714
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::04695ca2291c37cbeb147bf80be9bf3b
https://doi.org/10.1007/978-981-19-4672-1_24
https://doi.org/10.1007/978-981-19-4672-1_24
Autor:
Eva Kopfer, Karl-Theodor Sturm
Publikováno v:
J. Lond. Math. Soc. (2)
We prove that synthetic lower Ricci bounds for metric measure spaces -- both in the sense of Bakry-\'Emery and in the sense of Lott-Sturm-Villani -- can be characterized by various functional inequalities including local Poincar\'e inequalities, loca
Autor:
Karl-Theodor Sturm, Bang-Xian Han
Publikováno v:
Annali di matematica pura ed applicata. 201(2)
We derive precise transformation formulas for synthetic lower Ricci bounds under time change. More precisely, for local Dirichlet forms we study how the curvature-dimension condition in the sense of Bakry–Émery will transform under time change. Si
Autor:
Karl-Theodor Sturm, Stefan Hartmann
Publikováno v:
Mitteilungen der Deutschen Mathematiker-Vereinigung. 26:170-173
Autor:
Karl-Theodor Sturm
Publikováno v:
Proceedings of the American Mathematical Society
Given any continuous, lower bounded and $\kappa$-convex function $V$ on a metric measure space $(X,d,m)$ which is infinitesimally Hilbertian and satisfies some synthetic lower bound for the Ricci curvature in the sense of Lott-Sturm-Villani, we prove
Publikováno v:
Oberwolfach Reports. 13:3087-3147
The general topic of the 2013 workshop Heat kernels, stochastic processes and functional inequalities was the study of linear and non-linear diffusions in geometric environments: finite and infinite-dimensional manifolds, metric spaces, fractals and
Given a metric measure space $(X,\mathsf{d},\mathfrak{m})$ and a lower semicontinuous, lower bounded function $k\colon X\to\mathbb{R}$, we prove the equivalence of the synthetic approaches to Ricci curvature at $x\in X$ being bounded from below by $k
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9e74e19c349d56a89d5ca6316fa0878f
http://arxiv.org/abs/1906.09186
http://arxiv.org/abs/1906.09186
Autor:
Karl-Theodor Sturm
Publikováno v:
Geometric and Functional Analysis
We will study metric measure spaces$$(X,\mathsf{d},{\mathfrak {m}})$$(X,d,m)beyond the scope of spaces with synthetic lower Ricci bounds. In particular, we introduce distribution-valued lower Ricci bounds$$\mathsf{BE}_1(\kappa ,\infty )$$BE1(κ,∞)f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ce2ba3478fac58284560f650eb8244ea
Autor:
Karl-Theodor Sturm, Janna Lierl
Publikováno v:
Calculus of Variations and Partial Differential Equations
For large classes of non-convex subsets $Y$ in ${\mathbb R}^n$ or in Riemannian manifolds $(M,g)$ or in RCD-spaces $(X,d,m)$ we prove that the gradient flow for the Boltzmann entropy on the restricted metric measure space $(Y,d_Y,m_Y)$ exists - despi