Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Karl-Mikael Perfekt"'
Publikováno v:
Discrete Analysis (2023)
Bi-parameter potential theory and Carleson measures for the Dirichlet space on the bidisc, Discrete Analysis 2023:22, 58 pp. Carleson measures arise naturally when considering harmonic or holomorphic extensions from the boundary of a domain to the i
Externí odkaz:
https://doaj.org/article/cae225111c8a49919a855122d86d806f
Publikováno v:
Journal of the London Mathematical Society.
Publikováno v:
SIAM Journal on Mathematical Analysis
This article constructs a surface whose Neumann--Poincaré (NP) integral operator has infinitely many eigenvalues embedded in its essential spectrum. The surface is a sphere perturbed by smoothly attaching a conical singularity, which imparts the ess
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5af65d7e32b45df09b64f2bead435d29
https://hdl.handle.net/11250/2991514
https://hdl.handle.net/11250/2991514
Publikováno v:
Journal of Geometric Analysis
There is a bounded Hankel operator on the Paley--Wiener space of a disc in $\mathbb{R}^2$ which does not arise from a bounded symbol.
Comment: This paper has been accepted for publication in Journal of Geometric Analysis
Comment: This paper has been accepted for publication in Journal of Geometric Analysis
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9e9ae8324082c74ad7c20850911fee91
Publikováno v:
Mathematische Annalen
We characterize the essential spectrum of the plasmonic problem for polyhedra in $\mathbb{R}^3$. The description is particularly simple for convex polyhedra and permittivities $\epsilon < - 1$. The plasmonic problem is interpreted as a spectral probl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::92b25699ddcb8df66205fe4485810192
https://hdl.handle.net/11250/3033044
https://hdl.handle.net/11250/3033044
Autor:
Anne-Sophie Bonnet-Ben Dhia, Simon N. Chandler-Wilde, Sonia Fliss, Christophe Hazard, Karl-Mikael Perfekt, Yohanes Tjandrawidjaja
Publikováno v:
SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, In press
SIAM Journal on Mathematical Analysis, 2022, 54 (1), pp.512-557. ⟨10.1137/20M1387122⟩
SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, In press
SIAM Journal on Mathematical Analysis, 2022, 54 (1), pp.512-557. ⟨10.1137/20M1387122⟩
International audience; The Half-Space Matching (HSM) method has recently been developed as a new method for the solution of 2D scattering problems with complex backgrounds, providing an alternative to Perfectly Matched Layers (PML) or other artifici
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d98be64cde9f389a1cf40e17683e07d9
https://hal.inria.fr/hal-03087232
https://hal.inria.fr/hal-03087232
Autor:
Marcus Carlsson, Karl-Mikael Perfekt
Publikováno v:
International mathematics research notices
We prove Nehari’s theorem for integral Hankel and Toeplitz operators on simple convex polytopes in several variables. A special case of the theorem, generalizing the boundedness criterion of the Hankel and Toeplitz operators on the Paley–Wiener s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::83aface5887a97503200a369b507d696
https://hdl.handle.net/11250/2983696
https://hdl.handle.net/11250/2983696
Publikováno v:
Journal of Functional Analysis
Let $\mathscr{H}^2$ denote the Hilbert space of Dirichlet series with square-summable coefficients. We study composition operators $\mathscr{C}_\varphi$ on $\mathscr{H}^2$ which are generated by symbols of the form $\varphi(s) = c_0s + \sum_{n\geq1}
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b4251bcb01a46ead8191774f6c7c2bec
We consider composition operators $\mathscr{C}_\varphi$ on the Hardy space of Dirichlet series $\mathscr{H}^2$, generated by Dirichlet series symbols $\varphi$. We prove two different subordination principles for such operators. One concerns affine s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bd668a6e3d7ee189152d19ffbaf9cc1c
http://hdl.handle.net/11250/2628178
http://hdl.handle.net/11250/2628178
We introduce a mean counting function for Dirichlet series, which plays the same role in the function theory of Hardy spaces of Dirichlet series as the Nevanlinna counting function does in the classical theory. The existence of the mean counting func
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d9044e792c7ad27285f4cccacc472053