Zobrazeno 1 - 2
of 2
pro vyhledávání: '"Karl Wehden"'
Autor:
Matteo Manica, Jannis Born, Joris Cadow, Dimitrios Christofidellis, Ashish Dave, Dean Clarke, Yves Gaetan Nana Teukam, Giorgio Giannone, Samuel C. Hoffman, Matthew Buchan, Vijil Chenthamarakshan, Timothy Donovan, Hsiang Han Hsu, Federico Zipoli, Oliver Schilter, Akihiro Kishimoto, Lisa Hamada, Inkit Padhi, Karl Wehden, Lauren McHugh, Alexy Khrabrov, Payel Das, Seiji Takeda, John R. Smith
Publikováno v:
npj Computational Materials, Vol 9, Iss 1, Pp 1-6 (2023)
Abstract With the growing availability of data within various scientific domains, generative models hold enormous potential to accelerate scientific discovery. They harness powerful representations learned from datasets to speed up the formulation of
Externí odkaz:
https://doaj.org/article/d563c21247234f54b23d37c88d05e3d1
Autor:
Matteo Manica, Jannis Born, Joris Cadow, Dimitrios Christofidellis, Ashish Dave, Dean Clarke, Yves Gaetan Nana Teukam, Giorgio Giannone, Samuel C. Hoffman, Matthew Buchan, Vijil Chenthamarakshan, Timothy Donovan, Hsiang Han Hsu, Federico Zipoli, Oliver Schilter, Akihiro Kishimoto, Lisa Hamada, Inkit Padhi, Karl Wehden, Lauren McHugh, Alexy Khrabrov, Payel Das, Seiji Takeda, John R. Smith
With the growing availability of data within various scientific domains, generative models hold enormous potential to accelerate scientific discovery. They harness powerful representations learned from datasets to speed up the formulation of novel hy
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::145b068669f6e0ef69f5e03844536585