Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Karl Lorensen"'
Autor:
Peter H. Kropholler, Karl Lorensen
A ring $R$ satisfies the $\textit{strong rank condition}$ (SRC) if, for every natural number $n$, the free $R$-submodules of $R^n$ all have rank $\leq n$. Let $G$ be a group and $R$ a ring strongly graded by $G$ such that the base ring $R_1$ is a dom
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::314a8e0ad460d03678c875b2517ea024
Autor:
Peter H. Kropholler, Karl Lorensen
Publikováno v:
Transactions of the American Mathematical Society. 367:6441-6459
Assume that $G$ is a virtually torsion-free solvable group of finite rank and $A$ a $\mathbb ZG$-module whose underlying abelian group is torsion-free and has finite rank. We stipulate a condition on $A$ that ensures that $H^n(G,A)$ and $H_n(G,A)$ ar
Autor:
Karl Lorensen
Publikováno v:
Journal of Algebra. 320(4):1704-1722
For any positive integer $n$, $\mathcal{A}_n$ is the class of all groups $G$ such that, for $0\leq i\leq n$, $H^i(\hat{G},A)\cong H^i(G,A)$ for every finite discrete $\hat{G}$-module $A$. We describe certain types of free products with amalgam and HN
Autor:
Karl Lorensen
We define a class $\mathcal{U}$ of solvable groups of finite abelian section rank which includes all such groups that are virtually torsion-free as well as those that are finitely generated. Assume that $G$ is a group in $\mathcal{U}$ and $A$ a $\mat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d9a933f6ded1750884dcae27d7e4bd56
Autor:
Karl Lorensen
Publikováno v:
Bulletin of the Australian Mathematical Society. 91:351-352
Assume $G$ is a solvable group whose elementary abelian sections are all finite. Suppose, further, that $p$ is a prime such that $G$ fails to contain any subgroups isomorphic to $\mathbb Z/p^\infty$. We show that if $G$ is nilpotent, then the pro-$p$
Autor:
KARL LORENSEN
Assume $G$ is a solvable group whose elementary abelian sections are all finite. Suppose, further, that $p$ is a prime such that $G$ fails to contain any subgroups isomorphic to $C_{p^\infty}$. We show that if $G$ is nilpotent, then the pro-$p$ compl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::80e0871bf75bbcde73dfa22f5a8c8c53
Publikováno v:
Groups St Andrews 2005
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1f26ac79ae93df21828b6c05f457bcfc
https://doi.org/10.1017/cbo9780511721205.023
https://doi.org/10.1017/cbo9780511721205.023
Autor:
Karl Lorensen
Publikováno v:
Mathematical Proceedings of the Cambridge Philosophical Society. 123:213-215
Autor:
Karl Lorensen
Publikováno v:
Journal of Group Theory. 6
Autor:
Karl Lorensen
Publikováno v:
Journal of Algebra. 322:3793-3794