Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Karl K Norton"'
Autor:
Karl K. Norton
Publikováno v:
Acta Arithmetica. 85:51-78
Autor:
Karl K. Norton
Publikováno v:
Acta Arithmetica. 68:219-244
where ζ is the Riemann zeta-function and s > 1. It follows from (1.2) that for any positive integer k, dk(n) is the number of ordered k-tuples (n1, . . . , nk) of positive integers such that n1 . . . nk = n. In particular, d2(n) is the number of dis
Autor:
Karl K. Norton
Publikováno v:
Acta Math. 143 (1979), 9-38
We usually write co(n; P)=co(n), ~2(n; P ) = ~ ( n ) . In a previous paper [37], we obtained sharp inequalities for the frequencies of large deviations of co(n; E) and ~(n; E) from their normal order of magnitude. Those inequalities included refineme
Autor:
Karl K Norton
Publikováno v:
Journal of Mathematical Analysis and Applications. 63(1):265-296
Autor:
Karl K. Norton
Publikováno v:
Proceedings of Symposia in Pure Mathematics. :213-220
Autor:
Karl K. Norton
Publikováno v:
Transactions of the American Mathematical Society. 167:203-226
Sharp estimates are given for a double sum involving Dirichlet characters. These are applied to the problem of estimating certain sums whose values give a measure of the average distance between successive power residues to an arbitrary modulus. A pa
Autor:
Karl K. Norton
Publikováno v:
Acta Arithmetica. 15:161-179
Autor:
Karl K. Norton
Publikováno v:
Acta Arithmetica. 6:365-374
Autor:
Karl K. Norton
Publikováno v:
Journal of Number Theory. (1):60-85
Let ζ be the Riemann zeta-function and write ζ(s)2 = Σn >- 1 dz(n)n−s for real s > 1, z > 1, so that dz(n) is a generalized divisor function. We obtain good upper bounds for Dz(x, t) = Σn ≤ x(dz(n))t which are uniform in the real variables x,
Autor:
Karl K Norton
Publikováno v:
Journal of Number Theory. (4):398-418