Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Karl Hallowell"'
Autor:
Karl Hallowell, Andrew Waldron
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 3, p 089 (2007)
Lichnerowicz's algebra of differential geometric operators acting on symmetric tensors can be obtained from generalized geodesic motion of an observer carrying a complex tangent vector. This relation is based upon quantizing the classical evolution e
Externí odkaz:
https://doaj.org/article/c736c737dfb948fdbe2316be9e0046f0
Autor:
Andrew Waldron, Karl Hallowell
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 3, p 089 (2007)
Lichnerowicz's algebra of differential geometric operators acting on symmetric tensors can be obtained from generalized geodesic motion of an observer carrying a complex tangent vector. This relation is based upon quantizing the classical evolution e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a8415ea6e3e0d2c8d24238b8b76b3b1a
http://arxiv.org/abs/0707.3164
http://arxiv.org/abs/0707.3164
Autor:
Karl Hallowell, Andrew Waldron
Publikováno v:
Hallowell, Karl; & Waldron, Andrew. (2005). Constant Curvature Algebras and Higher Spin Action Generating Functions. Nucl.Phys. B724 (2005) 453-486. doi: 10.1016/j.nuclphysb.2005.06.021. UC Davis: Department of Mathematics. Retrieved from: http://www.escholarship.org/uc/item/3md7t916
The algebra of differential geometry operations on symmetric tensors over constant curvature manifolds forms a novel deformation of the sl(2,R) [semidirect product] R^2 Lie algebra. We present a simple calculus for calculations in its universal envel
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9d67b47d5f540a1d8fab42e5157a9375