Zobrazeno 1 - 10
of 67
pro vyhledávání: '"Karkalousos, P."'
AI is revolutionizing MRI along the acquisition and processing chain. Advanced AI frameworks have been developed to apply AI in various successive tasks, such as image reconstruction, quantitative parameter map estimation, and image segmentation. Exi
Externí odkaz:
http://arxiv.org/abs/2404.19665
Machine Learning methods can learn how to reconstruct Magnetic Resonance Images and thereby accelerate acquisition, which is of paramount importance to the clinical workflow. Physics-informed networks incorporate the forward model of accelerated MRI
Externí odkaz:
http://arxiv.org/abs/2111.15498
Autor:
Karkalousos, Dimitrios, Lønning, Kai, Hulst, Hanneke E., Dumoulin, Serge O., Sonke, Jan-Jakob, Vos, Frans M., Caan, Matthan W. A.
Objective: To allow efficient learning using the Recurrent Inference Machine (RIM) for image reconstruction whereas not being strictly dependent on the training data distribution so that unseen modalities and pathologies are still accurately recovere
Externí odkaz:
http://arxiv.org/abs/2012.07819
Autor:
Muckley, Matthew J., Riemenschneider, Bruno, Radmanesh, Alireza, Kim, Sunwoo, Jeong, Geunu, Ko, Jingyu, Jun, Yohan, Shin, Hyungseob, Hwang, Dosik, Mostapha, Mahmoud, Arberet, Simon, Nickel, Dominik, Ramzi, Zaccharie, Ciuciu, Philippe, Starck, Jean-Luc, Teuwen, Jonas, Karkalousos, Dimitrios, Zhang, Chaoping, Sriram, Anuroop, Huang, Zhengnan, Yakubova, Nafissa, Lui, Yvonne, Knoll, Florian
Accelerating MRI scans is one of the principal outstanding problems in the MRI research community. Towards this goal, we hosted the second fastMRI competition targeted towards reconstructing MR images with subsampled k-space data. We provided partici
Externí odkaz:
http://arxiv.org/abs/2012.06318
Autor:
Beauferris, Youssef, Teuwen, Jonas, Karkalousos, Dimitrios, Moriakov, Nikita, Caan, Mattha, Yiasemis, George, Rodrigues, Lívia, Lopes, Alexandre, Pedrini, Hélio, Rittner, Letícia, Dannecker, Maik, Studenyak, Viktor, Gröger, Fabian, Vyas, Devendra, Faghih-Roohi, Shahrooz, Jethi, Amrit Kumar, Raju, Jaya Chandra, Sivaprakasam, Mohanasankar, Lasby, Mike, Nogovitsyn, Nikita, Loos, Wallace, Frayne, Richard, Souza, Roberto
Deep-learning-based brain magnetic resonance imaging (MRI) reconstruction methods have the potential to accelerate the MRI acquisition process. Nevertheless, the scientific community lacks appropriate benchmarks to assess MRI reconstruction quality o
Externí odkaz:
http://arxiv.org/abs/2011.07952
Publikováno v:
Behavioral Sciences, Vol 14, Iss 5, p 405 (2024)
The main objectives of this study are to determine the prevalence of bullying in Greek secondary schools and detect the possible characteristics of bullies’ profiles in Greek school settings. A structured questionnaire was given to one hundred nine
Externí odkaz:
https://doaj.org/article/8eda9ecbc32a4702b427d226a41e4082
Autor:
Putzky, Patrick, Karkalousos, Dimitrios, Teuwen, Jonas, Miriakov, Nikita, Bakker, Bart, Caan, Matthan, Welling, Max
We, team AImsterdam, summarize our submission to the fastMRI challenge (Zbontar et al., 2018). Our approach builds on recent advances in invertible learning to infer models as presented in Putzky and Welling (2019). Both, our single-coil and our mult
Externí odkaz:
http://arxiv.org/abs/1910.08952
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Chaoping Zhang, Dimitrios Karkalousos, Pierre-Louis Bazin, Bram F. Coolen, Hugo Vrenken, Jan-Jakob Sonke, Birte U. Forstmann, Dirk H.J. Poot, Matthan W.A. Caan
Publikováno v:
NeuroImage, Vol 264, Iss , Pp 119680- (2022)
Quantitative MRI (qMRI) acquired at the ultra-high field of 7 Tesla has been used in visualizing and analyzing subcortical structures. qMRI relies on the acquisition of multiple images with different scan settings, leading to extended scanning times.
Externí odkaz:
https://doaj.org/article/bbdc96cc4d2848309eb1c84a57858f6d
Autor:
Youssef Beauferris, Jonas Teuwen, Dimitrios Karkalousos, Nikita Moriakov, Matthan Caan, George Yiasemis, Lívia Rodrigues, Alexandre Lopes, Helio Pedrini, Letícia Rittner, Maik Dannecker, Viktor Studenyak, Fabian Gröger, Devendra Vyas, Shahrooz Faghih-Roohi, Amrit Kumar Jethi, Jaya Chandra Raju, Mohanasankar Sivaprakasam, Mike Lasby, Nikita Nogovitsyn, Wallace Loos, Richard Frayne, Roberto Souza
Publikováno v:
Frontiers in Neuroscience, Vol 16 (2022)
Deep-learning-based brain magnetic resonance imaging (MRI) reconstruction methods have the potential to accelerate the MRI acquisition process. Nevertheless, the scientific community lacks appropriate benchmarks to assess the MRI reconstruction quali
Externí odkaz:
https://doaj.org/article/6261672881b846e09b8609e567b018fc