Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Karin Marie Jacobsen"'
Publikováno v:
Haugland, J, Jacobsen, K M & Schroll, S 2022, ' The role of gentle algebras in higher homological algebra ', Forum Mathematicum, vol. 34, no. 5, pp. 1255-1275 . https://doi.org/10.1515/forum-2021-0311
Forum mathematicum
Forum mathematicum
We investigate the role of gentle algebras in higher homological algebra. In the first part of the paper, we show that if the module category of a gentle algebra $\Lambda$ contains a $d$-cluster tilting subcategory for some $d \geq 2$, then $\Lambda$
Autor:
Karin Marie Jacobsen, Peter Jørgensen
Publikováno v:
Journal of Algebra
Let C be a 2-Calabi–Yau triangulated category, T a cluster tilting object with endomorphism algebra Γ. Consider the functor C(T,-): C -> mod Γ. It induces a bijection from the isomorphism classes of cluster tilting objects to the isomorphism clas
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dee029f070598fd57e2cc70ce552fe25
http://hdl.handle.net/11250/2631196
http://hdl.handle.net/11250/2631196
Publikováno v:
Journal of Algebra. 439:110-133
We study abelian quotient categories A=T/J, where T is a triangulated category and J is an ideal of T. Under the assumption that the quotient functor is cohomological we show that it is representable and give an explicit description of the functor. W
Publikováno v:
Beitraege zur Algebra und Geometrie
We classify all triangulated orbit categories of path-algebras of Dynkin diagrams that are triangle equivalent to a stable module category of a representation-finite self-injective standard algebra. For each triangulated orbit category T we give an e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8e1ef7d06f8343bfb11606483c39dff0
http://hdl.handle.net/11250/2470509
http://hdl.handle.net/11250/2470509
Autor:
Peter Jørgensen, Karin Marie Jacobsen
Let ${\mathscr T}$ be a triangulated category. If $T$ is a cluster tilting object and $I = [ \operatorname{add} T ]$ is the ideal of morphisms factoring through an object of $\operatorname{add} T$, then the quotient category ${\mathscr T} / I$ is abe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3f7a80f7c9eed33aab3c26d83cba9d24