Zobrazeno 1 - 2
of 2
pro vyhledávání: '"Karel Lucas van de Plassche"'
Autor:
F. J. Casson, Victor I. Dagnelie, Jet Contributors, Federico Felici, Yann Camenen, Clarisse Bourdelle, Simon Van Mulders, A. Ho, Jonathan Citrin, Karel Lucas van de Plassche
Publikováno v:
Physics of Plasmas
Physics of Plasmas, 2020
Physics of Plasmas, 27(2):022310. American Institute of Physics
Physics of Plasmas, 27, 022310
Physics of Plasmas, American Institute of Physics, 2020
HAL
Physics of Plasmas, 2020
Physics of Plasmas, 27(2):022310. American Institute of Physics
Physics of Plasmas, 27, 022310
Physics of Plasmas, American Institute of Physics, 2020
HAL
We present an ultrafast neural network (NN) model, QLKNN, which predicts core tokamak transport heat and particle fluxes. QLKNN is a surrogate model based on a database of 300 million flux calculations of the quasilinear gyrokinetic transport model Q
Autor:
Jonathan Citrin, A. Ho, Yann Camenen, Clarisse Bourdelle, H. Weisen, F. J. Casson, Karel Lucas van de Plassche, Jet Contributors
Publikováno v:
Physics of Plasmas
Physics of Plasmas, American Institute of Physics, 2021, 28 (3), pp.032305. ⟨10.1063/5.0038290⟩
Physics of Plasmas, 28(3):38290. American Institute of Physics
Physics of Plasmas, 28, 032305
Physics of Plasmas, 2021, 28 (3), pp.032305. ⟨10.1063/5.0038290⟩
Physics of Plasmas, American Institute of Physics, 2021, 28 (3), pp.032305. ⟨10.1063/5.0038290⟩
Physics of Plasmas, 28(3):38290. American Institute of Physics
Physics of Plasmas, 28, 032305
Physics of Plasmas, 2021, 28 (3), pp.032305. ⟨10.1063/5.0038290⟩
Within integrated tokamak plasma modeling, turbulent transport codes are typically the computational bottleneck limiting their routine use outside of post-discharge analysis. Neural network (NN) surrogates have been used to accelerate these calculati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7fe0e07ad736bdef9d740ff377501379
https://infoscience.epfl.ch/record/284936
https://infoscience.epfl.ch/record/284936