Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Karan Khathuria"'
Publikováno v:
Designs, Codes and Cryptography. 91:1595-1605
The binary $k$-dimensional simplex code is known to be a $2^{k-1}$-batch code and is conjectured to be a $2^{k-1}$-functional batch code. Here, we offer a simple, constructive proof of a result that is "in between" these two properties. Our approach
Publikováno v:
Code-Based Cryptography ISBN: 9783031296888
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::88a21211f401c8a5f54accd56c8061cf
https://doi.org/10.1007/978-3-031-29689-5_7
https://doi.org/10.1007/978-3-031-29689-5_7
Autor:
Irina E. Bocharova, Henk D. L. Hollmann, Karan Khathuria, Boris D. Kudryashov, Vitaly Skachek
Publikováno v:
2022 IEEE International Symposium on Information Theory (ISIT).
Publikováno v:
Applicable Algebra in Engineering, Communication and Computing. 34:335-358
In this paper, we present a new perspective of single server private information retrieval (PIR) schemes by using the notion of linear error-correcting codes. Many of the known single server schemes are based on taking linear combinations between dat
In this paper we focus on modules over a finite chain ring $\mathcal{R}$ of size $q^s$. We compute the density of free modules of $\mathcal{R}^n$, where we separately treat the asymptotics in $n,q$ and $s$. In particular, we focus on two cases: one w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::00c849c3f202f5cd4eecb5fac18f9ce1
http://arxiv.org/abs/2106.09403
http://arxiv.org/abs/2106.09403
We present a code-based public-key cryptosystem, in which we use Reed-Solomon codes over an extension field as secret codes and disguise it by considering its shortened expanded code over the base field. Considering shortened expanded codes provides
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::05cc5d3373d023a48a193bd38e34ae38
https://www.zora.uzh.ch/id/eprint/202293/
https://www.zora.uzh.ch/id/eprint/202293/
Autor:
Nicolas Aragon, Marco Baldi, Jean-Christophe Deneuville, Karan Khathuria, Edoardo Persichetti, Paolo Santini
We present an attack against a code-based signature scheme based on the Lyubashevsky protocol that was recently proposed by Song, Huang, Mu, Wu and Wang (SHMWW). The private key in the SHMWW scheme contains columns coming in part from an identity mat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::57ed6867f983a7bc9931cf8d7877c949
https://hal-enac.archives-ouvertes.fr/hal-03034660
https://hal-enac.archives-ouvertes.fr/hal-03034660
Autor:
Violetta Weger, Karan Khathuria, Anna-Lena Horlemann, Massimo Battaglioni, Paolo Santini, Edoardo Persichetti
In this paper we study the hardness of the syndrome decoding problem over finite rings endowed with the Lee metric. We first prove that the decisional version of the problem is NP-complete, by a reduction from the $3$-dimensional matching problem. Th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::df3557fca8a745c0af8fdee99ddd33de
Publikováno v:
Journal of Algebra Combinatorics Discrete Structures and Applications, Vol 7, Iss 2 (2020)
In this paper we generalize the ball-collision algorithm by Bernstein, Lange, Peters from the binary field to a general finite field. We also provide a complexity analysis and compare the asymptotic complexity to other generalized information set dec
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a30eb2cc7dc37339d8fe5f0e760f3ab4
http://arxiv.org/abs/1812.10955
http://arxiv.org/abs/1812.10955
In this paper we show that the $\mathbb Z/p^{m}\mathbb Z$-module structure of the ring $E_p^{(m)}$ is isomorphic to a $\mathbb Z/p^{m}\mathbb Z$-submodule of the matrix ring over $\mathbb Z/p^{m}\mathbb Z$. Using this intrinsic structure of $E_p^{(m)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7171ca95288ad1f9d0087327e8ab7ed9