Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Karaman, Batuhan K."'
Autor:
Karaman, Batuhan K., Zabir, Ishmam, Benhaim, Alon, Chaudhary, Vishrav, Sabuncu, Mert R., Song, Xia
Balancing safety and usefulness in large language models has become a critical challenge in recent years. Models often exhibit unsafe behavior or adopt an overly cautious approach, leading to frequent overrefusal of benign prompts, which reduces thei
Externí odkaz:
http://arxiv.org/abs/2410.12999
Autor:
Nguyen, Minh, Karaman, Batuhan K., Kim, Heejong, Wang, Alan Q., Liu, Fengbei, Sabuncu, Mert R.
Deep learning models can extract predictive and actionable information from complex inputs. The richer the inputs, the better these models usually perform. However, models that leverage rich inputs (e.g., multi-modality) can be difficult to deploy wi
Externí odkaz:
http://arxiv.org/abs/2405.20448
Autor:
Karaman, Batuhan K., Sabuncu, Mert R.
In this study, we employ a transformer encoder model to characterize the significance of longitudinal patient data for forecasting the progression of Alzheimer's Disease (AD). Our model, Longitudinal Forecasting Model for Alzheimer's Disease (LongFor
Externí odkaz:
http://arxiv.org/abs/2405.17352
Breast cancer is one of the leading causes of mortality among women worldwide. Early detection and risk assessment play a crucial role in improving survival rates. Therefore, annual or biennial mammograms are often recommended for screening in high-r
Externí odkaz:
http://arxiv.org/abs/2404.19083
Autor:
Wang, Alan Q., Karaman, Batuhan K., Kim, Heejong, Rosenthal, Jacob, Saluja, Rachit, Young, Sean I., Sabuncu, Mert R.
Interpretability for machine learning models in medical imaging (MLMI) is an important direction of research. However, there is a general sense of murkiness in what interpretability means. Why does the need for interpretability in MLMI arise? What go
Externí odkaz:
http://arxiv.org/abs/2310.01685
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Karaman, Batuhan K.1,2 (AUTHOR), Mormino, Elizabeth C.3 (AUTHOR), Sabuncu, Mert R.1,2 (AUTHOR) msabuncu@cornell.edu
Publikováno v:
PLoS ONE. 11/16/2022, Vol. 17 Issue 11, p1-24. 24p.
The two-volume set LNCS 14975 + 14976 constitutes the proceedings of the First International Conference on Artificial Intelligence in Healthcare, AIiH 2024, which took place in Swansea, UK, in September 2024. The 47 full papers included in the procee
Autor:
Marius George Linguraru, Qi Dou, Aasa Feragen, Stamatia Giannarou, Ben Glocker, Karim Lekadir, Julia A. Schnabel
The 12-volume set LNCS 15001 - 15012 constitutes the proceedings of the 27th International Conferenc on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024, which took place in Marrakesh, Morocco, during October 6–10, 2024. MI