Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Karam Aloui"'
Autor:
Karam Aloui
Publikováno v:
The Ramanujan Journal. 58:771-799
Let $$s_{q}$$ denote the sum of digits function in base q. The aim of this work is to estimate the exponential sums involving the sum of digits of shifted integers, namely of the form $$\displaystyle \sum \nolimits _{n\leqslant x}e(\alpha _{0}s_{q}(n
Publikováno v:
ZDM : the international journal on mathematics education. 54(5)
Mathematical competitions feature in most developed countries as a part of the secondary school experience, but to a lesser extent in developing countries. In this paper we investigate how widespread these competitions are in Africa, both historicall
Let $s(n)$ denote the sum of digits in the binary expansion of the integer $n$. Hare, Laishram and Stoll (2011) studied the number of odd integers such that $s(n)=s(n^2)=k$, for a given integer $k\geq 1$. The remaining cases that could not be treated
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a3c673f65de7f256dd9622b099312b72
Autor:
Karam Aloui
Publikováno v:
International Journal of Number Theory. 15:1143-1172
We estimate the exponential sum [Formula: see text], where [Formula: see text] is a real number and [Formula: see text] are digital functions; in the spirit of the works of Kim and Berend–Kolesnik. A similar estimate along short intervals is also p
Autor:
Firas Feki, Karam Aloui
Publikováno v:
Publicationes Mathematicae Debrecen. 94:337-358
Publikováno v:
Acta Arithmetica.
Somme des chiffres et répartition dans les classes de congruence pour les palindromes ellipséphiques
Publikováno v:
Acta Mathematica Hungarica. 151:409-455
We generalize several results concerning the distribution in residue classes of the sum of digits function to the case of palindromes with missing digits.
Publikováno v:
Taiwanese J. Math. 23, no. 4 (2019), 777-798
Let $f$ be a strongly $q$-additive function with integer values. Given an integer $k \geq 2$, we try to estimate the number of positive integers $n \leq N$ (resp. primes $p \leq N$) for which $f(n)$ is $k$-free (resp. $f(p)$ is $k$-free).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::26aaafe0de5d311347a54f6d08b48b16
https://projecteuclid.org/euclid.twjm/1563436868
https://projecteuclid.org/euclid.twjm/1563436868
Autor:
Karam Aloui
Publikováno v:
Proceedings - Mathematical Sciences. 125:457-476
Let q ≥ 2b e an integer and letSq (n) denote the sum of the digits in base q of the positive integer n. We look for an estimate of the average of some multiplicative arithmetical functions under constraints on the arithmetical congruence of the int
Publikováno v:
The Ramanujan Journal. 42:173-197
Si q≥2 est un nombre entier, on designe par Sq(n) la somme des chiffres en base q du nombre entier naturel n et par vq(n) sa valuation q-adique. L’objectif de cet article est d’etudier des sommes d’exponentielles de la forme ∑n≤xexp(2iπ(