Zobrazeno 1 - 10
of 90
pro vyhledávání: '"Karachalios, N."'
Autor:
Charalampidis, E. G., James, G., Cuevas-Maraver, J., Hennig, D., Karachalios, N. I., Kevrekidis, P. G.
In the present work we explore the potential of models of the discrete nonlinear Schr\"odinger (DNLS) type to support spatially localized and temporally quasiperiodic solutions on top of a finite background. Such solutions are rigorously shown to exi
Externí odkaz:
http://arxiv.org/abs/2306.08072
Autor:
Abbas, G., Kevrekidis, P. G., Allen, J. E., Koukouloyannis, V., Frantzeskakis, D. J., Karachalios, N.
In this work, a systematic study, examining the propagation of periodic and solitary wave along the magnetic field in a cold collision-free plasma, is presented. Employing the quasi-neutral approximation and the conservation of momentum flux and ener
Externí odkaz:
http://arxiv.org/abs/2006.16394
The Salerno model is a discrete variant of the celebrated nonlinear Schr\"odinger (NLS) equation interpolating between the discrete NLS (DNLS) equation and completely integrable Ablowitz-Ladik (AL) model by appropriately tuning the relevant homotopy
Externí odkaz:
http://arxiv.org/abs/2006.00958
We prove spatiotemporal algebraically decaying estimates for the density of the solutions of the linearly damped nonlinear Schr\"odinger equation with localized driving, when supplemented with vanishing boundary conditions. Their derivation is made v
Externí odkaz:
http://arxiv.org/abs/1910.08425
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Fotopoulos, G., Frantzeskakis, D. J., Karachalios, N. I., Kevrekidis, P. G., Koukouloyannis, V., Vetas, K.
We perform a numerical study of the initial-boundary value problem, with vanishing boundary conditions, of a driven nonlinear Schr\"odinger equation (NLS) with linear damping and a Gaussian driver. We identify Peregrine-like rogue waveforms, excited
Externí odkaz:
http://arxiv.org/abs/1812.05439
We discuss the finite-time collapse, also referred as blow-up, of the solutions of a discrete nonlinear Schr\"{o}dinger (DNLS) equation incorporating linear and nonlinear gain and loss. This DNLS system appears in many inherently discrete physical co
Externí odkaz:
http://arxiv.org/abs/1809.08025
We consider the energy landscape of a dissipative Klein-Gordon lattice with a $\phi^4$ on-site potential. Our analysis is based on suitable energy arguments, combined with a discrete version of the \L{}ojasiewicz inequality, in order to justify the c
Externí odkaz:
http://arxiv.org/abs/1809.07995
Autor:
Anastassi, Z. A., Fotopoulos, G., Frantzeskakis, D. J., Horikis, T. P., Karachalios, N. I., Kevrekidis, P. G., Stratis, I. G., Vetas, K.
We consider the asymptotic behavior of the solutions of a nonlinear Schr\"odinger (NLS) model incorporating linear and nonlinear gain/loss. First, we describe analytically the dynamical regimes (depending on the gain/loss strengths), for finite-time
Externí odkaz:
http://arxiv.org/abs/1702.08085