Zobrazeno 1 - 10
of 505
pro vyhledávání: '"Kannan, A Rajesh"'
Publikováno v:
Discrete Applied Mathematics, 357: 264-273, (2024)
In 2010, Butler introduced the unfolding operation on a bipartite graph to produce two bipartite graphs, which are cospectral for the adjacency and the normalized Laplacian matrices. In this article, we describe how the idea of unfolding a bipartite
Externí odkaz:
http://arxiv.org/abs/2401.03035
Autor:
Samanta, Aniruddha, Kannan, M. Rajesh
A complex unit gain graph ($ \mathbb{T} $-gain graph), $ \Phi=(G, \varphi) $ is a graph where the gain function $ \varphi $ assigns a unit complex number to each orientation of an edge of $ G $ and its inverse is assigned to the opposite orientation.
Externí odkaz:
http://arxiv.org/abs/2312.17152
Autor:
Mahato, Iswar, Kannan, M. Rajesh
In this article, we show that the generalized tree shift operation increases the distance spectral radius, distance signless Laplacian spectral radius, and the $D_\alpha$-spectral radius of complements of trees. As a consequence of this result, we co
Externí odkaz:
http://arxiv.org/abs/2306.05155
Autor:
Mahato, Iswar, Kannan, M. Rajesh
The eccentricity matrix of a connected graph $G$, denoted by $\mathcal{E}(G)$, is obtained from the distance matrix of $G$ by keeping the largest nonzero entries in each row and each column, and leaving zeros in the remaining ones. The $\mathcal{E}$-
Externí odkaz:
http://arxiv.org/abs/2301.01708
Autor:
Mahato, Iswar, Kannan, M. Rajesh
The eccentricity matrix of a connected graph $G$, denoted by $\mathcal{E}(G)$, is obtained from the distance matrix of $G$ by keeping the largest nonzero entries in each row and each column and leaving zeros in the remaining ones. The eigenvalues of
Externí odkaz:
http://arxiv.org/abs/2208.13462
Autor:
Mahato, Iswar, Kannan, M. Rajesh
Let $T$ be a tree on $n$ vertices whose edge weights are positive definite matrices of order $s$. The squared distance matrix of $T$, denoted by $\Delta$, is the $ns \times ns$ block matrix with $\Delta_{ij}=d(i,j)^2$, where $d(i,j)$ is the sum of th
Externí odkaz:
http://arxiv.org/abs/2205.01734
Autor:
Gawande, Pradip Sahebrao a, b, ⁎⁎, Manigandan, Vajravelu a, Ganesh R, Sankar a, Kannan, V. Rajesh b, Ramu, K. a, ⁎, Murthy, M.V. Ramana a
Publikováno v:
In Microbial Pathogenesis November 2024 196
A signed graph $\Sigma = (G, \sigma)$ is a graph where the function $\sigma$ assigns either $1$ or $-1$ to each edge of the simple graph $G$. The adjacency matrix of $\Sigma$, denoted by $A(\Sigma)$, is defined canonically. In a recent paper, Wang et
Externí odkaz:
http://arxiv.org/abs/2204.09870
Autor:
Mahato, Iswar, Kannan, M. Rajesh
The \textit{eccentricity matrix} $\mathcal{E}(G)$ of a connected graph $G$ is obtained from the distance matrix of $G$ by keeping the largest non-zero entries in each row and each column, and leaving zeros in the remaining ones. The eigenvalues of $\
Externí odkaz:
http://arxiv.org/abs/2203.16186
Autor:
Kannan, A. Rajesh1 (AUTHOR) rajeshkannan@hanyang.ac.kr, Shanmugam, N. Siva2 (AUTHOR) nsiva@nitt.edu, Rajkumar, V.3 (AUTHOR) rajkmech42@gmail.com, Vishnukumar, M.4 (AUTHOR) carevishnu@gmail.com, Channabasavanna, S. G.5 (AUTHOR) channasg1994@gmail.com, Oh, Junho1 (AUTHOR) wj6478@gmail.com, Dat, Than Trong Khanh6,7 (AUTHOR) ttkdat@hcmut.edu.vn, Yoon, Jonghun1,8 (AUTHOR) yooncsmd@gmail.com
Publikováno v:
Materials (1996-1944). Oct2024, Vol. 17 Issue 19, p4801. 19p.