Zobrazeno 1 - 10
of 408
pro vyhledávání: '"Kang-Ming Chang"'
Let $G$ be a finite group, $k$ be a field and $G\to GL(V_{\rm reg})$ be the regular representation of $G$ over $k$. Then $G$ acts naturally on the rational function field $k(V_{\rm reg})$ by $k$-automorphisms. Define $k(G)$ to be the fixed field $k(V
Externí odkaz:
http://arxiv.org/abs/1903.03750
Let $G$ be a subgroup of $S_{n}$, the symmetric group of degree $n$. For any field $k$, $G$ acts naturally on the rational function field $k(x_{1},\cdots,x_{n})$ via $k$-automorphisms defined by $\sigma\cdot x_{i}:=x_{\sigma\cdot i}$ for any $\sigma\
Externí odkaz:
http://arxiv.org/abs/1805.05678
Let $k$ be a field with char $k\neq 2$ and $k$ be not algebraically closed. Let $a\in k\setminus k^2$ and $L=k(\sqrt{a})(x,y)$ be a field extension of $k$ where $x,y$ are algebraically independent over $k$. Assume that $\sigma$ is a $k$-automorphism
Externí odkaz:
http://arxiv.org/abs/1801.06616
Let $k$ be a field and $G$ be a finite group acting on the rational function field $k(x_g : g\in G)$ by $k$-automorphisms defined as $h(x_g)=x_{hg}$ for any $g,h\in G$. We denote the fixed field $k(x_g : g\in G)^G$ by $k(G)$. Noether's problem asks w
Externí odkaz:
http://arxiv.org/abs/1710.01958
Autor:
Kang, Ming-chang, Zhou, Jian
Let $k$ be a field, $G$ be a finite group, $k(x(g):g\in G)$ be the rational function field with the variables $x(g)$ where $g\in G$. The group $G$ acts on $k(x(g):g\in G)$ by $k$-automorphisms where $h\cdot x(g)=x(hg)$ for all $h,g\in G$. Let $k(G)$
Externí odkaz:
http://arxiv.org/abs/1703.01010
Autor:
Zhi-Lin Chen, Kang-Ming Chang
Publikováno v:
Applied Sciences, Vol 13, Iss 19, p 11018 (2023)
This study investigated the influence of saccadic eye movements and emotions on real and animated faces to enhance a detailed perception of facial information. Considering the cross-cultural differences in facial features, animated faces also influen
Externí odkaz:
https://doaj.org/article/20270ae5300e4f019e3302c76d03ec2d
The finite subgroups of $GL_4(\bm{Z})$ are classified up to conjugation in \cite{BBNWZ}; in particular, there exist $710$ non-conjugate finite groups in $GL_4(\bm{Z})$. Each finite group $G$ of $GL_4(\bm{Z})$ acts naturally on $\bm{Z}^{\oplus 4}$; th
Externí odkaz:
http://arxiv.org/abs/1609.04142
Autor:
Kang, Ming-chang
Let $p$ be a prime number and $\zeta_p$ be a primitive $p$-th root of unity in $\bm{C}$. Let $k$ be a field and $k(x_0,\ldots,x_{p-1})$ be the rational function field of $p$ variables over $k$. Suppose that $G=\langle\sigma\rangle \simeq C_p$ acts on
Externí odkaz:
http://arxiv.org/abs/1606.04611
Publikováno v:
In Journal of Algebra 15 February 2021 568:529-546
Autor:
Kang, Ming-chang, Zhu, Guangjun
Let $R$ be a commutative ring, $\pi$ be a finite group, $R\pi$ be the group ring of $\pi$ over $R$. Theorem 1. If $R$ is a commutative artinian ring and $\pi$ is a finite group. Then the Cartan map $c:K_0(R\pi)\to G_0(R\pi)$ is injective. Theorem 2.
Externí odkaz:
http://arxiv.org/abs/1508.00095