Zobrazeno 1 - 10
of 164
pro vyhledávání: '"Kanellopoulos V"'
We introduce the higher order spreading models associated to a Banach space $X$. Their definition is based on $\ff$-sequences $(x_s)_{s\in\ff}$ with $\ff$ a regular thin family and the plegma families. We show that the higher order spreading models o
Externí odkaz:
http://arxiv.org/abs/1202.6390
Extending the classical notion of the spreading model, the $k$-spreading models of a Banach space are introduced, for every $k\in\mathbb{N}$. The definition, which is based on the $k$-sequences and plegma families, reveals a new class of spreading se
Externí odkaz:
http://arxiv.org/abs/1105.2732
We extend the classical Brunel-Sucheston definition of the spreading model by introducing the $\mathcal{F}$-sequences $(x_s)_{s\in\mathcal{F}}$ in a Banach space and the plegma families in $\mathcal{F}$ where $\mathcal{F}$ is a regular thin family. T
Externí odkaz:
http://arxiv.org/abs/1006.0957
Autor:
Kanellopoulos, V., Tyros, K.
We give an alternative proof of W. T. Gowers' theorem on block bases by reducing it to a discrete analogue on specific countable nets. We also give a Ramsey type result on k-tuples of block sequences in a normed linear space with a Schauder basis.
Externí odkaz:
http://arxiv.org/abs/0904.2313
To each function $f$ of bounded quadratic variation ($f\in V_2$) we associate a Hausdorff measure $\mu_f$. We show that the map $f\to\mu_f$ is locally Lipschitz and onto the positive cone of $\mathcal{M}[0,1]$. We use the measures $\{\mu_f:f\in V_2\}
Externí odkaz:
http://arxiv.org/abs/0903.2809
Publikováno v:
In Advances in Mathematics 15 February 2013 234:574-617
Publikováno v:
Transactions of the American Mathematical Society, 2011 Aug 01. 363(8), 4225-4262.
Externí odkaz:
http://dx.doi.org/10.1090/S0002-9947-2011-05209-8
Publikováno v:
In Chemical Engineering Science 2008 63(19):4735-4753
We consider some variants of the Gowers box norms, introduced by Hatami, and show their relevance in the context of sparse hypergraphs. Our main results are the following. Firstly, we prove a generalized von Neumann theorem for Lp graphons. Secondly,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2127::91d682f5b23e97fdb5e13af263a1bbcb
https://pergamos.lib.uoa.gr/uoa/dl/object/uoadl:3063421
https://pergamos.lib.uoa.gr/uoa/dl/object/uoadl:3063421
We study sparse hypergraphs which satisfy a mild pseudorandomness condition known as Lp regularity. We prove appropriate regularity and counting lemmas, and we extend the relative removal lemma of Tao to this setting. This answers a question from a 2
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2127::cff96cf3ac7ce1e707830fd9443c89d1
https://pergamos.lib.uoa.gr/uoa/dl/object/uoadl:3063661
https://pergamos.lib.uoa.gr/uoa/dl/object/uoadl:3063661