Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Kanailal Mahato"'
Publikováno v:
Axioms, Vol 13, Iss 5, p 296 (2024)
The main aim of this article is to derive certain continuity and boundedness properties of the coupled fractional Fourier transform on Schwartz-like spaces. We extend the domain of the coupled fractional Fourier transform to the space of tempered dis
Externí odkaz:
https://doaj.org/article/bc59b8291e774784bc7611474167c24a
Autor:
Kanailal Mahato, Prashant Singh
Publikováno v:
The Journal of Analysis.
Autor:
Kanailal Mahato, Durgesh Pasawan
Publikováno v:
Advances in Operator Theory. 8
Autor:
Durgesh Pasawan, Kanailal Mahato
Publikováno v:
Mathematical Methods in the Applied Sciences. 44:8660-8668
Autor:
Kanailal Mahato, Prashant Singh
Publikováno v:
Journal of Pseudo-Differential Operators and Applications. 13
Autor:
Durgesh Pasawan, Kanailal Mahato
Publikováno v:
Integral Transforms and Special Functions. 32:224-239
In this article, we present some boundedness results of fractional Hankel transform on Gelfand–Shilov spaces of type S. Certain inequalities are obtained for pseudo-differential operators involving...
Autor:
Kanailal Mahato, Prashant Singh
Publikováno v:
Rocky Mountain Journal of Mathematics. 51
We give characterization results of the fractional Hankel transform as well its inverse on some Gelfand–Shilov spaces of type W. Furthermore, we derive the boundedness properties of wavelet transforms involving the fractional Hankel transform on ce
Autor:
Durgesh Pasawan, Kanailal Mahato
Publikováno v:
Advances in Operator Theory. 6
We focus on the continuity of Hankel transform and pseudo-differential operator related to that Hankel transform on some appropriately constructed Gelfand–Shilov spaces of type W.
Autor:
Kanailal Mahato, Akhilesh Prasad
Publikováno v:
The Journal of Analysis. 29:1473-1474
Autor:
Akhilesh Prasad, Kanailal Mahato
Publikováno v:
The Journal of Analysis. 26:245-257
The main goal of this paper is to study the fractional wavelet transform associated with the second kind of fractional Hankel transform and to discuss some of its basic properties. An inversion formula for this fractional Hankel wavelet transform is