Zobrazeno 1 - 10
of 131
pro vyhledávání: '"Kamenskii, Mikhail A."'
Autor:
Kamenskii, Mikhail, Petrosyan, Garik
Publikováno v:
In Communications in Nonlinear Science and Numerical Simulation May 2024 132
We consider a Caratheodory differential equation with a state-dependent convex constraint that changes BV-continuously in time (a perturbed BV-continuous state-dependent sweeping processes). By setting up an appropriate catching-up algorithm we prove
Externí odkaz:
http://arxiv.org/abs/1808.10123
Autor:
Beletskii, Evgenii V., Kamenskii, Mikhail A., Alekseeva, Elena V., Volkov, Alexey I., Lukyanov, Daniil A., Anishchenko, Dmitrii V., Radomtseu, Anton O., Reveguk, Anastasiya A., Glumov, Oleg V., Levin, Oleg V.
Publikováno v:
In Applied Surface Science 30 September 2022 597
We develop a theory which allows making qualitative conclusions about the dynamics of both monotone and non-monotone Moreau sweeping processes. Specifically, we first prove that any sweeping processes with almost periodic monotone right-hand-sides ad
Externí odkaz:
http://arxiv.org/abs/1704.06341
We consider boundary value problems for stochastic differential equations of second order with a small parameter. For this case we prove a special existence and unicity theorem for strong solutions. The asymptotic behavior of these solutions as small
Externí odkaz:
http://arxiv.org/abs/1507.01817
Autor:
Kamenskii, Mikhail A.1 (AUTHOR) vkondratev@spbu.ru, Volkov, Filipp S.1 (AUTHOR), Eliseeva, Svetlana N.1 (AUTHOR), Tolstopyatova, Elena G.1 (AUTHOR) e.tolstopyatova@spbu.ru, Kondratiev, Veniamin V.1 (AUTHOR)
Publikováno v:
Energies (19961073). Apr2023, Vol. 16 Issue 7, p3221. 44p.
Autor:
Shkreba, Ekaterina V., Eliseeva, Svetlana N., Apraksin, Rostislav V., Kamenskii, Mikhail A., Tolstopjatova, Elena G., Kondratiev, Veniamin V.
Publikováno v:
In Mendeleev Communications January-February 2019 29(1):105-107
Autor:
Tolstopyatova, Elena G.1 (AUTHOR) e.tolstopyatova@spbu.ru, Kamenskii, Mikhail A.1 (AUTHOR), Kondratiev, Veniamin V.1 (AUTHOR)
Publikováno v:
Energies (19961073). Dec2022, Vol. 15 Issue 23, p8966. 26p.
By means of a linear scaling of the variables we convert a singular bifurcation equation in $\R^n$ into an equivalent equation to which the classical implicit function theorem can be directly applied. This allows to deduce the existence of a unique b
Externí odkaz:
http://arxiv.org/abs/0909.4258
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.