Zobrazeno 1 - 10
of 3 804
pro vyhledávání: '"Kamen, G"'
Autor:
Ivanov, Kamen G., Petrushev, Pencho
We study nonlinear approximation in $\operatorname{BMO}$ from splines generated by a hierarchy of B-splines over regular multilevel nested partitions of $\mathbb R$. Companion Jackson and Bernstein estimates are established that allow to completely c
Externí odkaz:
http://arxiv.org/abs/2001.10847
Autor:
Ivanov, Kamen G.1 (AUTHOR) kamen@math.bas.bg, Petrushev, Pencho2 (AUTHOR)
Publikováno v:
Constructive Approximation. Apr2023, Vol. 57 Issue 2, p631-661. 31p.
Autor:
George N. Chaldakov
Publikováno v:
Biomedical Reviews. 21:v
Kamen Usunoff was a professor at the Department of Anatomy and Histology, Medical University, Sofia, Bulgaria. He passed away on 28 February 2009 while on a research visit at the Department of Anatomy, University of Rostock, Rostock, Germany. Biomedi
Autor:
Kamen G. Ivanov, Pencho Petrushev
Publikováno v:
Constructive Approximation. 57:631-661
Publikováno v:
Proceedings of the American Mathematical Society, 2014 May 01. 142(5), 1577-1590.
Externí odkaz:
https://www.jstor.org/stable/23808388
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kamen G. Ivanov, Pencho Petrushev
Publikováno v:
Studia Mathematica. 259:339-360
Autor:
Pencho Petrushev, Kamen G. Ivanov
Publikováno v:
Geophysical Journal International. 224:181-190
SUMMARY An algorithm and software are developed for fast and accurate evaluation of the elements of the geomagnetic field represented in high-degree (>720) solid spherical harmonics at many scattered points in the space above the surface of the Earth
Autor:
Kamen G. Ivanov, Pencho Petrushev
Publikováno v:
Transactions of the American Mathematical Society. 373:3117-3176
A basic building block in Classical Potential Theory is the fundamental solution of the Laplace equation in ${\mathbb R}^d$ (Newtonian kernel). The main goal of this article is to study the rates of nonlinear $n$-term approximation of harmonic functi