Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Kamber, Amitay"'
We introduce the causal responders detection (CARD), a novel method for responder analysis that identifies treated subjects who significantly respond to a treatment. Leveraging recent advances in conformal prediction, CARD employs machine learning te
Externí odkaz:
http://arxiv.org/abs/2406.17571
Autor:
Kamber, Amitay, Varjú, Péter P.
We show that every element of $\mathrm{SL}_{n}(\mathbb{Z}/q\mathbb{Z})$ can be lifted to an element of $\mathrm{SL}_{n}(\mathbb{Z})$ of norm at most $Cq^2\log q$, while there exists an element such that every lift of it is of norm at least $q^{2+o(1)
Externí odkaz:
http://arxiv.org/abs/2310.10269
Autor:
Jana, Subhajit, Kamber, Amitay
Publikováno v:
Adv. Math. 443 (2024), Paper No. 109613
The \emph{Diophantine exponent} of an action of a group on a homogeneous space, as defined by Ghosh, Gorodnik, and Nevo, quantifies the complexity of approximating the points of the homogeneous space by the points on an orbit of the group. We show th
Externí odkaz:
http://arxiv.org/abs/2211.05106
Autor:
Jana, Subhajit, Kamber, Amitay
Publikováno v:
Forum Math. Sigma, vol. 12, e76, (2024)
We study the growth of the local $L^2$-norms of the unitary Eisenstein series for reductive groups over number fields, in terms of their parameters. We derive a \emph{poly-logarithmic} bound on an average, for a large class of reductive groups. The m
Externí odkaz:
http://arxiv.org/abs/2210.16291
Autor:
Jana, Subhajit, Kamber, Amitay
Publikováno v:
In Advances in Mathematics May 2024 443
Combinatorics via Closed Orbits: Number Theoretic Ramanujan Graphs are not Unique Neighbor Expanders
Autor:
Kamber, Amitay, Kaufman, Tali
The question of finding expander graphs with strong vertex expansion properties such as unique neighbor expansion and lossless expansion is central to computer science. A barrier to constructing these is that strong notions of expansion could not be
Externí odkaz:
http://arxiv.org/abs/2103.04311
Autor:
Golubev, Konstantin, Kamber, Amitay
Sarnak's Density Conjecture is an explicit bound on the multiplicities of non-tempered representations in a sequence of cocompact congruence arithmetic lattices in a semisimple Lie group, which is motivated by the work of Sarnak and Xue. The goal of
Externí odkaz:
http://arxiv.org/abs/2004.00373
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kamber, Amitay, Lavner, Hagai
Publikováno v:
Alg. Number Th. 17 (2023) 749-774
Let $\epsilon>0$ and let $q$ be a prime going to infinity. We prove that with high probability given $x,y$ in the projective plane over the finite field $F_q$ there exists $\gamma$ in $SL_3(Z)$, with coordinates bounded by $q^{1/3+\epsilon}$, whose p
Externí odkaz:
http://arxiv.org/abs/1908.06682
Autor:
Golubev, Konstantin, Kamber, Amitay
It was recently shown by Lubetzky and Peres (2016) and by Sardari (2018) that Ramanujan graphs, i.e., graphs with the optimal spectrum, exhibit cutoff of the simple random walk in an optimal time and have an optimal almost-diameter. We show that this
Externí odkaz:
http://arxiv.org/abs/1905.11165