Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Kambe, Yuta"'
Solving a polynomial system, or computing an associated Gr\"obner basis, has been a fundamental task in computational algebra. However, it is also known for its notorious doubly exponential time complexity in the number of variables in the worst case
Externí odkaz:
http://arxiv.org/abs/2311.12904
Autor:
Kambe, Yuta
The signatures of polynomials were originally introduced by Faug\`{e}re for the efficient computation of Gr\"obner bases [Fau02], and redefined by Arri-Perry [AP11] as the standard monomials modulo the module of syzygies. Since it is difficult to det
Externí odkaz:
http://arxiv.org/abs/2305.13639
Autor:
Kambe, Yuta, Lella, Paolo
We give a notion of "combinatorial proximity" among strongly stable ideals in a given polynomial ring with a fixed Hilbert polynomial. We show that this notion guarantees "geometric proximity" of the corresponding points in the Hilbert scheme. We def
Externí odkaz:
http://arxiv.org/abs/2002.08284
Autor:
Kambe, Yuta
We call the scheme parameterizing homogeneous ideals with fixed initial ideal the Gr\"obner scheme. We introduce a Bia{\l}ynicki-Birula decomposition of the Hilbert scheme $\mathrm{Hilb}^{P}_n$ for any Hilbert polynomial $P$ such that the cells are t
Externí odkaz:
http://arxiv.org/abs/1903.06484
Autor:
Kambe, Yuta
Let $k$ be a commutative ring and $S=k[x_0, \ldots, x_n]$ be a polynomial ring over $k$ with a monomial order. For any monomial ideal $J$, there exists an affine $k$-scheme of finite type, called Gr\"obner scheme, which parameterizes all homogeneous
Externí odkaz:
http://arxiv.org/abs/1709.00701
Autor:
Kambe, Yuta
For a given monomial ideal $J \subset k[x_1, \ldots, x_n]$ and a given monomial order $\prec$, the moduli functor of all reduced Gr\"obner bases with respect to $\prec$ whose initial ideal is $J$ is determined. In some cases, such a functor is repres
Externí odkaz:
http://arxiv.org/abs/1707.06448
Autor:
Kambe, Yuta
Publikováno v:
数理解析研究所講究録. 2085:104-111
グレブナー基底は近年の計算機の性能向上によって様々な理論の検証やその応用などに用いられるようになった. グレブナー基底の計算やその理論の幾何学的解釈は興味深い. なぜなら,
Autor:
Kambe, Yuta, Lella, Paolo
Publikováno v:
Annali di Matematica Pura ed Applicata; Apr2021, Vol. 200 Issue 2, p547-594, 48p