Zobrazeno 1 - 10
of 63
pro vyhledávání: '"Kamal Bahmanpour"'
Autor:
Kamal Bahmanpour
Publikováno v:
پژوهشهای ریاضی, Vol 8, Iss 1, Pp 43-56 (2022)
In this paper we present several results concerning the cofiniteness of generalized local cohomology modules.
Externí odkaz:
https://doaj.org/article/5903b188ac354febb31ff0c05d51d3b3
Autor:
Kamal Bahmanpour
Publikováno v:
Communications in Algebra. 51:496-509
Autor:
Kamal Bahmanpour
Publikováno v:
Czechoslovak Mathematical Journal. 72:541-558
Autor:
Kamal Bahmanpour
Publikováno v:
Journal of Algebra and Its Applications.
Let [Formula: see text] be a commutative Noetherian ring and [Formula: see text] be an ideal of [Formula: see text] such that the [Formula: see text]-modules [Formula: see text] are [Formula: see text]-cofinite, for all finitely generated [Formula: s
Publikováno v:
Communications in Algebra. 49:5263-5272
Autor:
Kamal Bahmanpour
Publikováno v:
Communications in Algebra. 49:2837-2850
Let I be an ideal of a commutative Noetherian ring R. It is shown that the R-modules Tor i R ( N , M ) are I-cofinite for all i ≥ 0 if M and N are I-cofinite R-modules and N is of dimension at most...
Autor:
Kamal Bahmanpour
Publikováno v:
Collectanea Mathematica. 72:527-568
Let I be an ideal of a commutative Noetherian ring R. It is shown that the R-modules $$H^i_I(M)$$ are I-cofinite, for all finitely generated R-modules M and all $$i\in {\mathbb {N}}_0$$ , if and only if the R-modules $$H^i_I(R)$$ are I-cofinite with
Publikováno v:
Communications in Algebra. 48:5421-5429
Let R be a commutative Noetherian ring and I be an ideal of R. Let M be an arbitrary R-module. In this paper we establish some results concerning the cofiniteness properties of modules. It is shown...
Publikováno v:
Archiv der Mathematik. 115:499-508
Let $$(R,{\mathfrak {m}},k)$$ be a Noetherian local ring of dimension $$d\ge 4$$ . Assume that $$2\le i \le d-2$$ is an integer and $$x_1,\ldots ,x_i$$ is a part of a system of parameters for R. Let $$\Upsilon _i$$ denote the set of all prime ideals
Publikováno v:
Colloquium Mathematicum. 160:133-139