Zobrazeno 1 - 10
of 63
pro vyhledávání: '"Kalvin, Victor"'
Autor:
Kalvin, Victor
We study the zeta-regularized spectral determinant of the Friedrichs Laplacians on the singular spheres obtained by cutting and glueing copies of constant curvature (hyperbolic, spherical, or flat) double triangle. The determinant is explicitly expre
Externí odkaz:
http://arxiv.org/abs/2310.04882
Autor:
Kalvin, Victor
Publikováno v:
Calc. Var. PDE (2023) 62:59, 35pp
We deduce an explicit closed formula for the zeta-regularized spectral determinant of the Friedrichs Laplacian on the Riemann sphere equipped with arbitrary constant curvature (flat, spherical, or hyperbolic) metric having three conical singularities
Externí odkaz:
http://arxiv.org/abs/2112.02771
Autor:
Kalvin, Victor
We explicitly express the spectral determinant of Friederichs Dirichlet Laplacians on the 2-dimensional hyperbolic (Gaussian curvature -1) cones in terms of the cone angle and the geodesic radius of the boundary. The related results in the recent pap
Externí odkaz:
http://arxiv.org/abs/2011.05407
Autor:
Kalvin, Victor
We study extremal properties of the determinant of Friederichs selfadjoint Laplacian on the Euclidean isosceles triangle envelopes of fixed area as a function of angles. Small-angle asymptotics show that the determinant grows without any bound as an
Externí odkaz:
http://arxiv.org/abs/2010.02209
Autor:
Kalvin, Victor
We present and prove Polyakov-Alvarez type comparison formulas for the determinants of Friederichs extensions of Laplacians corresponding to conformally equivalent metrics on a compact Riemann surface with conical singularities. In particular, we fin
Externí odkaz:
http://arxiv.org/abs/1910.00104
Autor:
Kalvin, Victor
Let $\mathsf m$ be any conical (or smooth) metric of finite volume on the Riemann sphere $\Bbb CP^1$. On a compact Riemann surface $X$ of genus $g$ consider a meromorphic funciton $f: X\to {\Bbb C}P^1$ such that all poles and critical points of $f$ a
Externí odkaz:
http://arxiv.org/abs/1712.05405
Autor:
Kalvin, Victor, Kokotov, Alexey
We find an explicit expression for the zeta-regularized determinant of (the Friedrichs extension) of the Laplacian on a compact Riemann surface of genus one with conformal metric of curvature $1$ having a single conical singularity of angle $4\pi$.
Externí odkaz:
http://arxiv.org/abs/1712.04588
Autor:
Kalvin, Victor, Kokotov, Alexey
Let $f: X\to {\Bbb C}P^1$ be a meromorphic function of degree $N$ with simple poles and simple critical points on a compact Riemann surface $X$ of genus $g$ and let $\mathsf m$ be the standard round metric of curvature $1$ on the Riemann sphere ${\Bb
Externí odkaz:
http://arxiv.org/abs/1612.08660
Autor:
Kalvin, Victor
Publikováno v:
In Journal of Functional Analysis 1 April 2021 280(7)
The Hurwitz space is the moduli space of pairs $(X,f)$ where $X$ is a compact Riemann surface and $f$ is a meromorphic function on $X$. We study the Laplace operator $\Delta^{|df|^2}$ of the flat singular Riemannian manifold $(X,|df|^2)$. We define a
Externí odkaz:
http://arxiv.org/abs/1410.3106